summaryrefslogtreecommitdiffstats
path: root/crypto/ec/ec_cvt.c
diff options
context:
space:
mode:
authorMatt Caswell <matt@openssl.org>2015-01-22 04:40:55 +0100
committerMatt Caswell <matt@openssl.org>2015-01-22 10:20:09 +0100
commit0f113f3ee4d629ef9a4a30911b22b224772085e5 (patch)
treee014603da5aed1d0751f587a66d6e270b6bda3de /crypto/ec/ec_cvt.c
parentMore tweaks for comments due indent issues (diff)
downloadopenssl-0f113f3ee4d629ef9a4a30911b22b224772085e5.tar.xz
openssl-0f113f3ee4d629ef9a4a30911b22b224772085e5.zip
Run util/openssl-format-source -v -c .
Reviewed-by: Tim Hudson <tjh@openssl.org>
Diffstat (limited to 'crypto/ec/ec_cvt.c')
-rw-r--r--crypto/ec/ec_cvt.c123
1 files changed, 60 insertions, 63 deletions
diff --git a/crypto/ec/ec_cvt.c b/crypto/ec/ec_cvt.c
index 682425de38..0720615802 100644
--- a/crypto/ec/ec_cvt.c
+++ b/crypto/ec/ec_cvt.c
@@ -10,7 +10,7 @@
* are met:
*
* 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
+ * notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
@@ -58,7 +58,7 @@
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
- * Portions of the attached software ("Contribution") are developed by
+ * Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
@@ -69,78 +69,75 @@
*
*/
-
-
#include <openssl/err.h>
#include "ec_lcl.h"
-
-EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- const EC_METHOD *meth;
- EC_GROUP *ret;
+EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a,
+ const BIGNUM *b, BN_CTX *ctx)
+{
+ const EC_METHOD *meth;
+ EC_GROUP *ret;
#if defined(OPENSSL_BN_ASM_MONT)
- /*
- * This might appear controversial, but the fact is that generic
- * prime method was observed to deliver better performance even
- * for NIST primes on a range of platforms, e.g.: 60%-15%
- * improvement on IA-64, ~25% on ARM, 30%-90% on P4, 20%-25%
- * in 32-bit build and 35%--12% in 64-bit build on Core2...
- * Coefficients are relative to optimized bn_nist.c for most
- * intensive ECDSA verify and ECDH operations for 192- and 521-
- * bit keys respectively. Choice of these boundary values is
- * arguable, because the dependency of improvement coefficient
- * from key length is not a "monotone" curve. For example while
- * 571-bit result is 23% on ARM, 384-bit one is -1%. But it's
- * generally faster, sometimes "respectfully" faster, sometimes
- * "tolerably" slower... What effectively happens is that loop
- * with bn_mul_add_words is put against bn_mul_mont, and the
- * latter "wins" on short vectors. Correct solution should be
- * implementing dedicated NxN multiplication subroutines for
- * small N. But till it materializes, let's stick to generic
- * prime method...
- * <appro>
- */
- meth = EC_GFp_mont_method();
+ /*
+ * This might appear controversial, but the fact is that generic
+ * prime method was observed to deliver better performance even
+ * for NIST primes on a range of platforms, e.g.: 60%-15%
+ * improvement on IA-64, ~25% on ARM, 30%-90% on P4, 20%-25%
+ * in 32-bit build and 35%--12% in 64-bit build on Core2...
+ * Coefficients are relative to optimized bn_nist.c for most
+ * intensive ECDSA verify and ECDH operations for 192- and 521-
+ * bit keys respectively. Choice of these boundary values is
+ * arguable, because the dependency of improvement coefficient
+ * from key length is not a "monotone" curve. For example while
+ * 571-bit result is 23% on ARM, 384-bit one is -1%. But it's
+ * generally faster, sometimes "respectfully" faster, sometimes
+ * "tolerably" slower... What effectively happens is that loop
+ * with bn_mul_add_words is put against bn_mul_mont, and the
+ * latter "wins" on short vectors. Correct solution should be
+ * implementing dedicated NxN multiplication subroutines for
+ * small N. But till it materializes, let's stick to generic
+ * prime method...
+ * <appro>
+ */
+ meth = EC_GFp_mont_method();
#else
- if (BN_nist_mod_func(p))
- meth = EC_GFp_nist_method();
- else
- meth = EC_GFp_mont_method();
+ if (BN_nist_mod_func(p))
+ meth = EC_GFp_nist_method();
+ else
+ meth = EC_GFp_mont_method();
#endif
-
- ret = EC_GROUP_new(meth);
- if (ret == NULL)
- return NULL;
- if (!EC_GROUP_set_curve_GFp(ret, p, a, b, ctx))
- {
- EC_GROUP_clear_free(ret);
- return NULL;
- }
+ ret = EC_GROUP_new(meth);
+ if (ret == NULL)
+ return NULL;
- return ret;
- }
+ if (!EC_GROUP_set_curve_GFp(ret, p, a, b, ctx)) {
+ EC_GROUP_clear_free(ret);
+ return NULL;
+ }
+
+ return ret;
+}
#ifndef OPENSSL_NO_EC2M
-EC_GROUP *EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- const EC_METHOD *meth;
- EC_GROUP *ret;
-
- meth = EC_GF2m_simple_method();
-
- ret = EC_GROUP_new(meth);
- if (ret == NULL)
- return NULL;
+EC_GROUP *EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a,
+ const BIGNUM *b, BN_CTX *ctx)
+{
+ const EC_METHOD *meth;
+ EC_GROUP *ret;
+
+ meth = EC_GF2m_simple_method();
+
+ ret = EC_GROUP_new(meth);
+ if (ret == NULL)
+ return NULL;
- if (!EC_GROUP_set_curve_GF2m(ret, p, a, b, ctx))
- {
- EC_GROUP_clear_free(ret);
- return NULL;
- }
+ if (!EC_GROUP_set_curve_GF2m(ret, p, a, b, ctx)) {
+ EC_GROUP_clear_free(ret);
+ return NULL;
+ }
- return ret;
- }
+ return ret;
+}
#endif