summaryrefslogtreecommitdiffstats
path: root/crypto/kdf
diff options
context:
space:
mode:
authorPauli <paul.dale@oracle.com>2019-08-21 00:00:12 +0200
committerPauli <paul.dale@oracle.com>2019-09-06 11:27:57 +0200
commit5eb43d382b3eb3fb6950cc8e0dce82886e23e984 (patch)
treeb32e637f7349322afae2edaca63690b6b7d59d69 /crypto/kdf
parentTeach TLSProxy how to parse CertificateRequest messages (diff)
downloadopenssl-5eb43d382b3eb3fb6950cc8e0dce82886e23e984.tar.xz
openssl-5eb43d382b3eb3fb6950cc8e0dce82886e23e984.zip
Move KDFs to the provider.
Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9662)
Diffstat (limited to 'crypto/kdf')
-rw-r--r--crypto/kdf/hkdf.c440
-rw-r--r--crypto/kdf/pbkdf2.c324
-rw-r--r--crypto/kdf/scrypt.c506
-rw-r--r--crypto/kdf/sshkdf.c292
-rw-r--r--crypto/kdf/sskdf.c558
-rw-r--r--crypto/kdf/tls1_prf.c375
-rw-r--r--crypto/kdf/x942kdf.c407
7 files changed, 0 insertions, 2902 deletions
diff --git a/crypto/kdf/hkdf.c b/crypto/kdf/hkdf.c
deleted file mode 100644
index 33c74da86a..0000000000
--- a/crypto/kdf/hkdf.c
+++ /dev/null
@@ -1,440 +0,0 @@
-/*
- * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
-
-#include <stdlib.h>
-#include <stdarg.h>
-#include <string.h>
-#include <openssl/hmac.h>
-#include <openssl/evp.h>
-#include <openssl/kdf.h>
-#include "internal/cryptlib.h"
-#include "internal/numbers.h"
-#include "internal/evp_int.h"
-#include "kdf_local.h"
-
-#define HKDF_MAXBUF 1024
-
-static void kdf_hkdf_reset(EVP_KDF_IMPL *impl);
-static int HKDF(const EVP_MD *evp_md,
- const unsigned char *salt, size_t salt_len,
- const unsigned char *key, size_t key_len,
- const unsigned char *info, size_t info_len,
- unsigned char *okm, size_t okm_len);
-static int HKDF_Extract(const EVP_MD *evp_md,
- const unsigned char *salt, size_t salt_len,
- const unsigned char *ikm, size_t ikm_len,
- unsigned char *prk, size_t prk_len);
-static int HKDF_Expand(const EVP_MD *evp_md,
- const unsigned char *prk, size_t prk_len,
- const unsigned char *info, size_t info_len,
- unsigned char *okm, size_t okm_len);
-
-struct evp_kdf_impl_st {
- int mode;
- const EVP_MD *md;
- unsigned char *salt;
- size_t salt_len;
- unsigned char *key;
- size_t key_len;
- unsigned char info[HKDF_MAXBUF];
- size_t info_len;
-};
-
-static EVP_KDF_IMPL *kdf_hkdf_new(void)
-{
- EVP_KDF_IMPL *impl;
-
- if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
- KDFerr(KDF_F_KDF_HKDF_NEW, ERR_R_MALLOC_FAILURE);
- return impl;
-}
-
-static void kdf_hkdf_free(EVP_KDF_IMPL *impl)
-{
- kdf_hkdf_reset(impl);
- OPENSSL_free(impl);
-}
-
-static void kdf_hkdf_reset(EVP_KDF_IMPL *impl)
-{
- OPENSSL_free(impl->salt);
- OPENSSL_clear_free(impl->key, impl->key_len);
- OPENSSL_cleanse(impl->info, impl->info_len);
- memset(impl, 0, sizeof(*impl));
-}
-
-static int kdf_hkdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
-{
- const unsigned char *p;
- size_t len;
- const EVP_MD *md;
-
- switch (cmd) {
- case EVP_KDF_CTRL_SET_MD:
- md = va_arg(args, const EVP_MD *);
- if (md == NULL)
- return 0;
-
- impl->md = md;
- return 1;
-
- case EVP_KDF_CTRL_SET_HKDF_MODE:
- impl->mode = va_arg(args, int);
- return 1;
-
- case EVP_KDF_CTRL_SET_SALT:
- p = va_arg(args, const unsigned char *);
- len = va_arg(args, size_t);
- if (len == 0 || p == NULL)
- return 1;
-
- OPENSSL_free(impl->salt);
- impl->salt = OPENSSL_memdup(p, len);
- if (impl->salt == NULL)
- return 0;
-
- impl->salt_len = len;
- return 1;
-
- case EVP_KDF_CTRL_SET_KEY:
- p = va_arg(args, const unsigned char *);
- len = va_arg(args, size_t);
- OPENSSL_clear_free(impl->key, impl->key_len);
- impl->key = OPENSSL_memdup(p, len);
- if (impl->key == NULL)
- return 0;
-
- impl->key_len = len;
- return 1;
-
- case EVP_KDF_CTRL_RESET_HKDF_INFO:
- OPENSSL_cleanse(impl->info, impl->info_len);
- impl->info_len = 0;
- return 1;
-
- case EVP_KDF_CTRL_ADD_HKDF_INFO:
- p = va_arg(args, const unsigned char *);
- len = va_arg(args, size_t);
- if (len == 0 || p == NULL)
- return 1;
-
- if (len > (HKDF_MAXBUF - impl->info_len))
- return 0;
-
- memcpy(impl->info + impl->info_len, p, len);
- impl->info_len += len;
- return 1;
-
- default:
- return -2;
- }
-}
-
-static int kdf_hkdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
- const char *value)
-{
- if (strcmp(type, "mode") == 0) {
- int mode;
-
- if (strcmp(value, "EXTRACT_AND_EXPAND") == 0)
- mode = EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND;
- else if (strcmp(value, "EXTRACT_ONLY") == 0)
- mode = EVP_KDF_HKDF_MODE_EXTRACT_ONLY;
- else if (strcmp(value, "EXPAND_ONLY") == 0)
- mode = EVP_KDF_HKDF_MODE_EXPAND_ONLY;
- else
- return 0;
-
- return call_ctrl(kdf_hkdf_ctrl, impl, EVP_KDF_CTRL_SET_HKDF_MODE, mode);
- }
-
- if (strcmp(type, "digest") == 0)
- return kdf_md2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_MD, value);
-
- if (strcmp(type, "salt") == 0)
- return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);
-
- if (strcmp(type, "hexsalt") == 0)
- return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);
-
- if (strcmp(type, "key") == 0)
- return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_KEY, value);
-
- if (strcmp(type, "hexkey") == 0)
- return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_KEY, value);
-
- if (strcmp(type, "info") == 0)
- return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_ADD_HKDF_INFO,
- value);
-
- if (strcmp(type, "hexinfo") == 0)
- return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_ADD_HKDF_INFO,
- value);
-
- return -2;
-}
-
-static size_t kdf_hkdf_size(EVP_KDF_IMPL *impl)
-{
- int sz;
-
- if (impl->mode != EVP_KDF_HKDF_MODE_EXTRACT_ONLY)
- return SIZE_MAX;
-
- if (impl->md == NULL) {
- KDFerr(KDF_F_KDF_HKDF_SIZE, KDF_R_MISSING_MESSAGE_DIGEST);
- return 0;
- }
- sz = EVP_MD_size(impl->md);
- if (sz < 0)
- return 0;
-
- return sz;
-}
-
-static int kdf_hkdf_derive(EVP_KDF_IMPL *impl, unsigned char *key,
- size_t keylen)
-{
- if (impl->md == NULL) {
- KDFerr(KDF_F_KDF_HKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
- return 0;
- }
- if (impl->key == NULL) {
- KDFerr(KDF_F_KDF_HKDF_DERIVE, KDF_R_MISSING_KEY);
- return 0;
- }
-
- switch (impl->mode) {
- case EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND:
- return HKDF(impl->md, impl->salt, impl->salt_len, impl->key,
- impl->key_len, impl->info, impl->info_len, key,
- keylen);
-
- case EVP_KDF_HKDF_MODE_EXTRACT_ONLY:
- return HKDF_Extract(impl->md, impl->salt, impl->salt_len, impl->key,
- impl->key_len, key, keylen);
-
- case EVP_KDF_HKDF_MODE_EXPAND_ONLY:
- return HKDF_Expand(impl->md, impl->key, impl->key_len, impl->info,
- impl->info_len, key, keylen);
-
- default:
- return 0;
- }
-}
-
-const EVP_KDF hkdf_kdf_meth = {
- EVP_KDF_HKDF,
- kdf_hkdf_new,
- kdf_hkdf_free,
- kdf_hkdf_reset,
- kdf_hkdf_ctrl,
- kdf_hkdf_ctrl_str,
- kdf_hkdf_size,
- kdf_hkdf_derive
-};
-
-/*
- * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"
- * Section 2 (https://tools.ietf.org/html/rfc5869#section-2) and
- * "Cryptographic Extraction and Key Derivation: The HKDF Scheme"
- * Section 4.2 (https://eprint.iacr.org/2010/264.pdf).
- *
- * From the paper:
- * The scheme HKDF is specified as:
- * HKDF(XTS, SKM, CTXinfo, L) = K(1) | K(2) | ... | K(t)
- *
- * where:
- * SKM is source key material
- * XTS is extractor salt (which may be null or constant)
- * CTXinfo is context information (may be null)
- * L is the number of key bits to be produced by KDF
- * k is the output length in bits of the hash function used with HMAC
- * t = ceil(L/k)
- * the value K(t) is truncated to its first d = L mod k bits.
- *
- * From RFC 5869:
- * 2.2. Step 1: Extract
- * HKDF-Extract(salt, IKM) -> PRK
- * 2.3. Step 2: Expand
- * HKDF-Expand(PRK, info, L) -> OKM
- */
-static int HKDF(const EVP_MD *evp_md,
- const unsigned char *salt, size_t salt_len,
- const unsigned char *ikm, size_t ikm_len,
- const unsigned char *info, size_t info_len,
- unsigned char *okm, size_t okm_len)
-{
- unsigned char prk[EVP_MAX_MD_SIZE];
- int ret, sz;
- size_t prk_len;
-
- sz = EVP_MD_size(evp_md);
- if (sz < 0)
- return 0;
- prk_len = (size_t)sz;
-
- /* Step 1: HKDF-Extract(salt, IKM) -> PRK */
- if (!HKDF_Extract(evp_md, salt, salt_len, ikm, ikm_len, prk, prk_len))
- return 0;
-
- /* Step 2: HKDF-Expand(PRK, info, L) -> OKM */
- ret = HKDF_Expand(evp_md, prk, prk_len, info, info_len, okm, okm_len);
- OPENSSL_cleanse(prk, sizeof(prk));
-
- return ret;
-}
-
-/*
- * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"
- * Section 2.2 (https://tools.ietf.org/html/rfc5869#section-2.2).
- *
- * 2.2. Step 1: Extract
- *
- * HKDF-Extract(salt, IKM) -> PRK
- *
- * Options:
- * Hash a hash function; HashLen denotes the length of the
- * hash function output in octets
- *
- * Inputs:
- * salt optional salt value (a non-secret random value);
- * if not provided, it is set to a string of HashLen zeros.
- * IKM input keying material
- *
- * Output:
- * PRK a pseudorandom key (of HashLen octets)
- *
- * The output PRK is calculated as follows:
- *
- * PRK = HMAC-Hash(salt, IKM)
- */
-static int HKDF_Extract(const EVP_MD *evp_md,
- const unsigned char *salt, size_t salt_len,
- const unsigned char *ikm, size_t ikm_len,
- unsigned char *prk, size_t prk_len)
-{
- int sz = EVP_MD_size(evp_md);
-
- if (sz < 0)
- return 0;
- if (prk_len != (size_t)sz) {
- KDFerr(KDF_F_HKDF_EXTRACT, KDF_R_WRONG_OUTPUT_BUFFER_SIZE);
- return 0;
- }
- /* calc: PRK = HMAC-Hash(salt, IKM) */
- return HMAC(evp_md, salt, salt_len, ikm, ikm_len, prk, NULL) != NULL;
-}
-
-/*
- * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)"
- * Section 2.3 (https://tools.ietf.org/html/rfc5869#section-2.3).
- *
- * 2.3. Step 2: Expand
- *
- * HKDF-Expand(PRK, info, L) -> OKM
- *
- * Options:
- * Hash a hash function; HashLen denotes the length of the
- * hash function output in octets
- *
- * Inputs:
- * PRK a pseudorandom key of at least HashLen octets
- * (usually, the output from the extract step)
- * info optional context and application specific information
- * (can be a zero-length string)
- * L length of output keying material in octets
- * (<= 255*HashLen)
- *
- * Output:
- * OKM output keying material (of L octets)
- *
- * The output OKM is calculated as follows:
- *
- * N = ceil(L/HashLen)
- * T = T(1) | T(2) | T(3) | ... | T(N)
- * OKM = first L octets of T
- *
- * where:
- * T(0) = empty string (zero length)
- * T(1) = HMAC-Hash(PRK, T(0) | info | 0x01)
- * T(2) = HMAC-Hash(PRK, T(1) | info | 0x02)
- * T(3) = HMAC-Hash(PRK, T(2) | info | 0x03)
- * ...
- *
- * (where the constant concatenated to the end of each T(n) is a
- * single octet.)
- */
-static int HKDF_Expand(const EVP_MD *evp_md,
- const unsigned char *prk, size_t prk_len,
- const unsigned char *info, size_t info_len,
- unsigned char *okm, size_t okm_len)
-{
- HMAC_CTX *hmac;
- int ret = 0, sz;
- unsigned int i;
- unsigned char prev[EVP_MAX_MD_SIZE];
- size_t done_len = 0, dig_len, n;
-
- sz = EVP_MD_size(evp_md);
- if (sz <= 0)
- return 0;
- dig_len = (size_t)sz;
-
- /* calc: N = ceil(L/HashLen) */
- n = okm_len / dig_len;
- if (okm_len % dig_len)
- n++;
-
- if (n > 255 || okm == NULL)
- return 0;
-
- if ((hmac = HMAC_CTX_new()) == NULL)
- return 0;
-
- if (!HMAC_Init_ex(hmac, prk, prk_len, evp_md, NULL))
- goto err;
-
- for (i = 1; i <= n; i++) {
- size_t copy_len;
- const unsigned char ctr = i;
-
- /* calc: T(i) = HMAC-Hash(PRK, T(i - 1) | info | i) */
- if (i > 1) {
- if (!HMAC_Init_ex(hmac, NULL, 0, NULL, NULL))
- goto err;
-
- if (!HMAC_Update(hmac, prev, dig_len))
- goto err;
- }
-
- if (!HMAC_Update(hmac, info, info_len))
- goto err;
-
- if (!HMAC_Update(hmac, &ctr, 1))
- goto err;
-
- if (!HMAC_Final(hmac, prev, NULL))
- goto err;
-
- copy_len = (done_len + dig_len > okm_len) ?
- okm_len - done_len :
- dig_len;
-
- memcpy(okm + done_len, prev, copy_len);
-
- done_len += copy_len;
- }
- ret = 1;
-
- err:
- OPENSSL_cleanse(prev, sizeof(prev));
- HMAC_CTX_free(hmac);
- return ret;
-}
diff --git a/crypto/kdf/pbkdf2.c b/crypto/kdf/pbkdf2.c
deleted file mode 100644
index d41689773c..0000000000
--- a/crypto/kdf/pbkdf2.c
+++ /dev/null
@@ -1,324 +0,0 @@
-/*
- * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
-
-#include <stdlib.h>
-#include <stdarg.h>
-#include <string.h>
-#include <openssl/hmac.h>
-#include <openssl/evp.h>
-#include <openssl/kdf.h>
-#include "internal/cryptlib.h"
-#include "internal/evp_int.h"
-#include "kdf_local.h"
-
-/* Constants specified in SP800-132 */
-#define KDF_PBKDF2_MIN_KEY_LEN_BITS 112
-#define KDF_PBKDF2_MAX_KEY_LEN_DIGEST_RATIO 0xFFFFFFFF
-#define KDF_PBKDF2_MIN_ITERATIONS 1000
-#define KDF_PBKDF2_MIN_SALT_LEN (128 / 8)
-/*
- * For backwards compatibility reasons,
- * Extra checks are done by default in fips mode only.
- */
-#ifdef FIPS_MODE
-# define KDF_PBKDF2_DEFAULT_CHECKS 1
-#else
-# define KDF_PBKDF2_DEFAULT_CHECKS 0
-#endif /* FIPS_MODE */
-
-static void kdf_pbkdf2_reset(EVP_KDF_IMPL *impl);
-static void kdf_pbkdf2_init(EVP_KDF_IMPL *impl);
-static int pbkdf2_derive(const char *pass, size_t passlen,
- const unsigned char *salt, int saltlen, int iter,
- const EVP_MD *digest, unsigned char *key,
- size_t keylen, int extra_checks);
-
-struct evp_kdf_impl_st {
- unsigned char *pass;
- size_t pass_len;
- unsigned char *salt;
- size_t salt_len;
- int iter;
- const EVP_MD *md;
- int lower_bound_checks;
-};
-
-static EVP_KDF_IMPL *kdf_pbkdf2_new(void)
-{
- EVP_KDF_IMPL *impl;
-
- impl = OPENSSL_zalloc(sizeof(*impl));
- if (impl == NULL) {
- KDFerr(KDF_F_KDF_PBKDF2_NEW, ERR_R_MALLOC_FAILURE);
- return NULL;
- }
- kdf_pbkdf2_init(impl);
- return impl;
-}
-
-static void kdf_pbkdf2_free(EVP_KDF_IMPL *impl)
-{
- kdf_pbkdf2_reset(impl);
- OPENSSL_free(impl);
-}
-
-static void kdf_pbkdf2_reset(EVP_KDF_IMPL *impl)
-{
- OPENSSL_free(impl->salt);
- OPENSSL_clear_free(impl->pass, impl->pass_len);
- memset(impl, 0, sizeof(*impl));
- kdf_pbkdf2_init(impl);
-}
-
-static void kdf_pbkdf2_init(EVP_KDF_IMPL *impl)
-{
- impl->iter = PKCS5_DEFAULT_ITER;
- impl->md = EVP_sha1();
- impl->lower_bound_checks = KDF_PBKDF2_DEFAULT_CHECKS;
-}
-
-static int pbkdf2_set_membuf(unsigned char **buffer, size_t *buflen,
- const unsigned char *new_buffer,
- size_t new_buflen)
-{
- if (new_buffer == NULL)
- return 1;
-
- OPENSSL_clear_free(*buffer, *buflen);
-
- if (new_buflen > 0) {
- *buffer = OPENSSL_memdup(new_buffer, new_buflen);
- } else {
- *buffer = OPENSSL_malloc(1);
- }
- if (*buffer == NULL) {
- KDFerr(KDF_F_PBKDF2_SET_MEMBUF, ERR_R_MALLOC_FAILURE);
- return 0;
- }
-
- *buflen = new_buflen;
- return 1;
-}
-
-static int kdf_pbkdf2_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
-{
- int iter, pkcs5, min_iter;
- const unsigned char *p;
- size_t len;
- const EVP_MD *md;
-
- switch (cmd) {
- case EVP_KDF_CTRL_SET_PBKDF2_PKCS5_MODE:
- pkcs5 = va_arg(args, int);
- impl->lower_bound_checks = (pkcs5 == 0) ? 1 : 0;
- return 1;
- case EVP_KDF_CTRL_SET_PASS:
- p = va_arg(args, const unsigned char *);
- len = va_arg(args, size_t);
- return pbkdf2_set_membuf(&impl->pass, &impl->pass_len, p, len);
-
- case EVP_KDF_CTRL_SET_SALT:
- p = va_arg(args, const unsigned char *);
- len = va_arg(args, size_t);
- if (impl->lower_bound_checks != 0 && len < KDF_PBKDF2_MIN_SALT_LEN) {
- KDFerr(KDF_F_KDF_PBKDF2_CTRL, KDF_R_INVALID_SALT_LEN);
- return 0;
- }
- return pbkdf2_set_membuf(&impl->salt, &impl->salt_len, p, len);
-
- case EVP_KDF_CTRL_SET_ITER:
- iter = va_arg(args, int);
- min_iter = impl->lower_bound_checks != 0 ? KDF_PBKDF2_MIN_ITERATIONS : 1;
- if (iter < min_iter) {
- KDFerr(KDF_F_KDF_PBKDF2_CTRL, KDF_R_INVALID_ITERATION_COUNT);
- return 0;
- }
- impl->iter = iter;
- return 1;
-
- case EVP_KDF_CTRL_SET_MD:
- md = va_arg(args, const EVP_MD *);
- if (md == NULL) {
- KDFerr(KDF_F_KDF_PBKDF2_CTRL, KDF_R_VALUE_MISSING);
- return 0;
- }
-
- impl->md = md;
- return 1;
-
- default:
- return -2;
- }
-}
-
-static int kdf_pbkdf2_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
- const char *value)
-{
- if (value == NULL) {
- KDFerr(KDF_F_KDF_PBKDF2_CTRL_STR, KDF_R_VALUE_MISSING);
- return 0;
- }
-
- if (strcmp(type, "pass") == 0)
- return kdf_str2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_PASS,
- value);
-
- if (strcmp(type, "hexpass") == 0)
- return kdf_hex2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_PASS,
- value);
-
- if (strcmp(type, "salt") == 0)
- return kdf_str2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_SALT,
- value);
-
- if (strcmp(type, "hexsalt") == 0)
- return kdf_hex2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_SALT,
- value);
-
- if (strcmp(type, "iter") == 0)
- return call_ctrl(kdf_pbkdf2_ctrl, impl, EVP_KDF_CTRL_SET_ITER,
- atoi(value));
-
- if (strcmp(type, "digest") == 0)
- return kdf_md2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_MD, value);
-
- if (strcmp(type, "pkcs5") == 0)
- return kdf_str2ctrl(impl, kdf_pbkdf2_ctrl,
- EVP_KDF_CTRL_SET_PBKDF2_PKCS5_MODE, value);
- return -2;
-}
-
-static int kdf_pbkdf2_derive(EVP_KDF_IMPL *impl, unsigned char *key,
- size_t keylen)
-{
- if (impl->pass == NULL) {
- KDFerr(KDF_F_KDF_PBKDF2_DERIVE, KDF_R_MISSING_PASS);
- return 0;
- }
-
- if (impl->salt == NULL) {
- KDFerr(KDF_F_KDF_PBKDF2_DERIVE, KDF_R_MISSING_SALT);
- return 0;
- }
-
- return pbkdf2_derive((char *)impl->pass, impl->pass_len,
- impl->salt, impl->salt_len, impl->iter,
- impl->md, key, keylen, impl->lower_bound_checks);
-}
-
-const EVP_KDF pbkdf2_kdf_meth = {
- EVP_KDF_PBKDF2,
- kdf_pbkdf2_new,
- kdf_pbkdf2_free,
- kdf_pbkdf2_reset,
- kdf_pbkdf2_ctrl,
- kdf_pbkdf2_ctrl_str,
- NULL,
- kdf_pbkdf2_derive
-};
-
-/*
- * This is an implementation of PKCS#5 v2.0 password based encryption key
- * derivation function PBKDF2. SHA1 version verified against test vectors
- * posted by Peter Gutmann to the PKCS-TNG mailing list.
- *
- * The constraints specified by SP800-132 have been added i.e.
- * - Check the range of the key length.
- * - Minimum iteration count of 1000.
- * - Randomly-generated portion of the salt shall be at least 128 bits.
- */
-static int pbkdf2_derive(const char *pass, size_t passlen,
- const unsigned char *salt, int saltlen, int iter,
- const EVP_MD *digest, unsigned char *key,
- size_t keylen, int lower_bound_checks)
-{
- int ret = 0;
- unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4];
- int cplen, j, k, tkeylen, mdlen;
- unsigned long i = 1;
- HMAC_CTX *hctx_tpl = NULL, *hctx = NULL;
-
- mdlen = EVP_MD_size(digest);
- if (mdlen <= 0)
- return 0;
-
- /*
- * This check should always be done because keylen / mdlen >= (2^32 - 1)
- * results in an overflow of the loop counter 'i'.
- */
- if ((keylen / mdlen) >= KDF_PBKDF2_MAX_KEY_LEN_DIGEST_RATIO) {
- KDFerr(KDF_F_PBKDF2_DERIVE, KDF_R_INVALID_KEY_LEN);
- return 0;
- }
-
- if (lower_bound_checks) {
- if ((keylen * 8) < KDF_PBKDF2_MIN_KEY_LEN_BITS) {
- KDFerr(KDF_F_PBKDF2_DERIVE, KDF_R_INVALID_KEY_LEN);
- return 0;
- }
- if (saltlen < KDF_PBKDF2_MIN_SALT_LEN) {
- KDFerr(KDF_F_PBKDF2_DERIVE, KDF_R_INVALID_SALT_LEN);
- return 0;
- }
- if (iter < KDF_PBKDF2_MIN_ITERATIONS) {
- KDFerr(KDF_F_PBKDF2_DERIVE, KDF_R_INVALID_ITERATION_COUNT);
- return 0;
- }
- }
-
- hctx_tpl = HMAC_CTX_new();
- if (hctx_tpl == NULL)
- return 0;
- p = key;
- tkeylen = keylen;
- if (!HMAC_Init_ex(hctx_tpl, pass, passlen, digest, NULL))
- goto err;
- hctx = HMAC_CTX_new();
- if (hctx == NULL)
- goto err;
- while (tkeylen) {
- if (tkeylen > mdlen)
- cplen = mdlen;
- else
- cplen = tkeylen;
- /*
- * We are unlikely to ever use more than 256 blocks (5120 bits!) but
- * just in case...
- */
- itmp[0] = (unsigned char)((i >> 24) & 0xff);
- itmp[1] = (unsigned char)((i >> 16) & 0xff);
- itmp[2] = (unsigned char)((i >> 8) & 0xff);
- itmp[3] = (unsigned char)(i & 0xff);
- if (!HMAC_CTX_copy(hctx, hctx_tpl))
- goto err;
- if (!HMAC_Update(hctx, salt, saltlen)
- || !HMAC_Update(hctx, itmp, 4)
- || !HMAC_Final(hctx, digtmp, NULL))
- goto err;
- memcpy(p, digtmp, cplen);
- for (j = 1; j < iter; j++) {
- if (!HMAC_CTX_copy(hctx, hctx_tpl))
- goto err;
- if (!HMAC_Update(hctx, digtmp, mdlen)
- || !HMAC_Final(hctx, digtmp, NULL))
- goto err;
- for (k = 0; k < cplen; k++)
- p[k] ^= digtmp[k];
- }
- tkeylen -= cplen;
- i++;
- p += cplen;
- }
- ret = 1;
-
-err:
- HMAC_CTX_free(hctx);
- HMAC_CTX_free(hctx_tpl);
- return ret;
-}
diff --git a/crypto/kdf/scrypt.c b/crypto/kdf/scrypt.c
deleted file mode 100644
index 29ceeb3ad9..0000000000
--- a/crypto/kdf/scrypt.c
+++ /dev/null
@@ -1,506 +0,0 @@
-/*
- * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
-
-#include <stdlib.h>
-#include <stdarg.h>
-#include <string.h>
-#include <openssl/evp.h>
-#include <openssl/kdf.h>
-#include <openssl/err.h>
-#include "internal/evp_int.h"
-#include "internal/numbers.h"
-#include "kdf_local.h"
-
-#ifndef OPENSSL_NO_SCRYPT
-
-static void kdf_scrypt_reset(EVP_KDF_IMPL *impl);
-static void kdf_scrypt_init(EVP_KDF_IMPL *impl);
-static int atou64(const char *nptr, uint64_t *result);
-static int scrypt_alg(const char *pass, size_t passlen,
- const unsigned char *salt, size_t saltlen,
- uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
- unsigned char *key, size_t keylen);
-
-struct evp_kdf_impl_st {
- unsigned char *pass;
- size_t pass_len;
- unsigned char *salt;
- size_t salt_len;
- uint64_t N;
- uint32_t r, p;
- uint64_t maxmem_bytes;
-};
-
-/* Custom uint64_t parser since we do not have strtoull */
-static int atou64(const char *nptr, uint64_t *result)
-{
- uint64_t value = 0;
-
- while (*nptr) {
- unsigned int digit;
- uint64_t new_value;
-
- if ((*nptr < '0') || (*nptr > '9')) {
- return 0;
- }
- digit = (unsigned int)(*nptr - '0');
- new_value = (value * 10) + digit;
- if ((new_value < digit) || ((new_value - digit) / 10 != value)) {
- /* Overflow */
- return 0;
- }
- value = new_value;
- nptr++;
- }
- *result = value;
- return 1;
-}
-
-static EVP_KDF_IMPL *kdf_scrypt_new(void)
-{
- EVP_KDF_IMPL *impl;
-
- impl = OPENSSL_zalloc(sizeof(*impl));
- if (impl == NULL) {
- KDFerr(KDF_F_KDF_SCRYPT_NEW, ERR_R_MALLOC_FAILURE);
- return NULL;
- }
- kdf_scrypt_init(impl);
- return impl;
-}
-
-static void kdf_scrypt_free(EVP_KDF_IMPL *impl)
-{
- kdf_scrypt_reset(impl);
- OPENSSL_free(impl);
-}
-
-static void kdf_scrypt_reset(EVP_KDF_IMPL *impl)
-{
- OPENSSL_free(impl->salt);
- OPENSSL_clear_free(impl->pass, impl->pass_len);
- memset(impl, 0, sizeof(*impl));
- kdf_scrypt_init(impl);
-}
-
-static void kdf_scrypt_init(EVP_KDF_IMPL *impl)
-{
- /* Default values are the most conservative recommendation given in the
- * original paper of C. Percival. Derivation uses roughly 1 GiB of memory
- * for this parameter choice (approx. 128 * r * N * p bytes).
- */
- impl->N = 1 << 20;
- impl->r = 8;
- impl->p = 1;
- impl->maxmem_bytes = 1025 * 1024 * 1024;
-}
-
-static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen,
- const unsigned char *new_buffer,
- size_t new_buflen)
-{
- if (new_buffer == NULL)
- return 1;
-
- OPENSSL_clear_free(*buffer, *buflen);
-
- if (new_buflen > 0) {
- *buffer = OPENSSL_memdup(new_buffer, new_buflen);
- } else {
- *buffer = OPENSSL_malloc(1);
- }
- if (*buffer == NULL) {
- KDFerr(KDF_F_SCRYPT_SET_MEMBUF, ERR_R_MALLOC_FAILURE);
- return 0;
- }
-
- *buflen = new_buflen;
- return 1;
-}
-
-static int is_power_of_two(uint64_t value)
-{
- return (value != 0) && ((value & (value - 1)) == 0);
-}
-
-static int kdf_scrypt_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
-{
- uint64_t u64_value;
- uint32_t value;
- const unsigned char *p;
- size_t len;
-
- switch (cmd) {
- case EVP_KDF_CTRL_SET_PASS:
- p = va_arg(args, const unsigned char *);
- len = va_arg(args, size_t);
- return scrypt_set_membuf(&impl->pass, &impl->pass_len, p, len);
-
- case EVP_KDF_CTRL_SET_SALT:
- p = va_arg(args, const unsigned char *);
- len = va_arg(args, size_t);
- return scrypt_set_membuf(&impl->salt, &impl->salt_len, p, len);
-
- case EVP_KDF_CTRL_SET_SCRYPT_N:
- u64_value = va_arg(args, uint64_t);
- if ((u64_value <= 1) || !is_power_of_two(u64_value))
- return 0;
-
- impl->N = u64_value;
- return 1;
-
- case EVP_KDF_CTRL_SET_SCRYPT_R:
- value = va_arg(args, uint32_t);
- if (value < 1)
- return 0;
-
- impl->r = value;
- return 1;
-
- case EVP_KDF_CTRL_SET_SCRYPT_P:
- value = va_arg(args, uint32_t);
- if (value < 1)
- return 0;
-
- impl->p = value;
- return 1;
-
- case EVP_KDF_CTRL_SET_MAXMEM_BYTES:
- u64_value = va_arg(args, uint64_t);
- if (u64_value < 1)
- return 0;
-
- impl->maxmem_bytes = u64_value;
- return 1;
-
- default:
- return -2;
- }
-}
-
-static int kdf_scrypt_ctrl_uint32(EVP_KDF_IMPL *impl, int cmd,
- const char *value)
-{
- int int_value = atoi(value);
-
- if (int_value < 0 || (uint64_t)int_value > UINT32_MAX) {
- KDFerr(KDF_F_KDF_SCRYPT_CTRL_UINT32, KDF_R_VALUE_ERROR);
- return 0;
- }
- return call_ctrl(kdf_scrypt_ctrl, impl, cmd, (uint32_t)int_value);
-}
-
-static int kdf_scrypt_ctrl_uint64(EVP_KDF_IMPL *impl, int cmd,
- const char *value)
-{
- uint64_t u64_value;
-
- if (!atou64(value, &u64_value)) {
- KDFerr(KDF_F_KDF_SCRYPT_CTRL_UINT64, KDF_R_VALUE_ERROR);
- return 0;
- }
- return call_ctrl(kdf_scrypt_ctrl, impl, cmd, u64_value);
-}
-
-static int kdf_scrypt_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
- const char *value)
-{
- if (value == NULL) {
- KDFerr(KDF_F_KDF_SCRYPT_CTRL_STR, KDF_R_VALUE_MISSING);
- return 0;
- }
-
- if (strcmp(type, "pass") == 0)
- return kdf_str2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_PASS,
- value);
-
- if (strcmp(type, "hexpass") == 0)
- return kdf_hex2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_PASS,
- value);
-
- if (strcmp(type, "salt") == 0)
- return kdf_str2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_SALT,
- value);
-
- if (strcmp(type, "hexsalt") == 0)
- return kdf_hex2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_SALT,
- value);
-
- if (strcmp(type, "N") == 0)
- return kdf_scrypt_ctrl_uint64(impl, EVP_KDF_CTRL_SET_SCRYPT_N, value);
-
- if (strcmp(type, "r") == 0)
- return kdf_scrypt_ctrl_uint32(impl, EVP_KDF_CTRL_SET_SCRYPT_R, value);
-
- if (strcmp(type, "p") == 0)
- return kdf_scrypt_ctrl_uint32(impl, EVP_KDF_CTRL_SET_SCRYPT_P, value);
-
- if (strcmp(type, "maxmem_bytes") == 0)
- return kdf_scrypt_ctrl_uint64(impl, EVP_KDF_CTRL_SET_MAXMEM_BYTES,
- value);
-
- return -2;
-}
-
-static int kdf_scrypt_derive(EVP_KDF_IMPL *impl, unsigned char *key,
- size_t keylen)
-{
- if (impl->pass == NULL) {
- KDFerr(KDF_F_KDF_SCRYPT_DERIVE, KDF_R_MISSING_PASS);
- return 0;
- }
-
- if (impl->salt == NULL) {
- KDFerr(KDF_F_KDF_SCRYPT_DERIVE, KDF_R_MISSING_SALT);
- return 0;
- }
-
- return scrypt_alg((char *)impl->pass, impl->pass_len, impl->salt,
- impl->salt_len, impl->N, impl->r, impl->p,
- impl->maxmem_bytes, key, keylen);
-}
-
-const EVP_KDF scrypt_kdf_meth = {
- EVP_KDF_SCRYPT,
- kdf_scrypt_new,
- kdf_scrypt_free,
- kdf_scrypt_reset,
- kdf_scrypt_ctrl,
- kdf_scrypt_ctrl_str,
- NULL,
- kdf_scrypt_derive
-};
-
-#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
-static void salsa208_word_specification(uint32_t inout[16])
-{
- int i;
- uint32_t x[16];
-
- memcpy(x, inout, sizeof(x));
- for (i = 8; i > 0; i -= 2) {
- x[4] ^= R(x[0] + x[12], 7);
- x[8] ^= R(x[4] + x[0], 9);
- x[12] ^= R(x[8] + x[4], 13);
- x[0] ^= R(x[12] + x[8], 18);
- x[9] ^= R(x[5] + x[1], 7);
- x[13] ^= R(x[9] + x[5], 9);
- x[1] ^= R(x[13] + x[9], 13);
- x[5] ^= R(x[1] + x[13], 18);
- x[14] ^= R(x[10] + x[6], 7);
- x[2] ^= R(x[14] + x[10], 9);
- x[6] ^= R(x[2] + x[14], 13);
- x[10] ^= R(x[6] + x[2], 18);
- x[3] ^= R(x[15] + x[11], 7);
- x[7] ^= R(x[3] + x[15], 9);
- x[11] ^= R(x[7] + x[3], 13);
- x[15] ^= R(x[11] + x[7], 18);
- x[1] ^= R(x[0] + x[3], 7);
- x[2] ^= R(x[1] + x[0], 9);
- x[3] ^= R(x[2] + x[1], 13);
- x[0] ^= R(x[3] + x[2], 18);
- x[6] ^= R(x[5] + x[4], 7);
- x[7] ^= R(x[6] + x[5], 9);
- x[4] ^= R(x[7] + x[6], 13);
- x[5] ^= R(x[4] + x[7], 18);
- x[11] ^= R(x[10] + x[9], 7);
- x[8] ^= R(x[11] + x[10], 9);
- x[9] ^= R(x[8] + x[11], 13);
- x[10] ^= R(x[9] + x[8], 18);
- x[12] ^= R(x[15] + x[14], 7);
- x[13] ^= R(x[12] + x[15], 9);
- x[14] ^= R(x[13] + x[12], 13);
- x[15] ^= R(x[14] + x[13], 18);
- }
- for (i = 0; i < 16; ++i)
- inout[i] += x[i];
- OPENSSL_cleanse(x, sizeof(x));
-}
-
-static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
-{
- uint64_t i, j;
- uint32_t X[16], *pB;
-
- memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
- pB = B;
- for (i = 0; i < r * 2; i++) {
- for (j = 0; j < 16; j++)
- X[j] ^= *pB++;
- salsa208_word_specification(X);
- memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
- }
- OPENSSL_cleanse(X, sizeof(X));
-}
-
-static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
- uint32_t *X, uint32_t *T, uint32_t *V)
-{
- unsigned char *pB;
- uint32_t *pV;
- uint64_t i, k;
-
- /* Convert from little endian input */
- for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
- *pV = *pB++;
- *pV |= *pB++ << 8;
- *pV |= *pB++ << 16;
- *pV |= (uint32_t)*pB++ << 24;
- }
-
- for (i = 1; i < N; i++, pV += 32 * r)
- scryptBlockMix(pV, pV - 32 * r, r);
-
- scryptBlockMix(X, V + (N - 1) * 32 * r, r);
-
- for (i = 0; i < N; i++) {
- uint32_t j;
- j = X[16 * (2 * r - 1)] % N;
- pV = V + 32 * r * j;
- for (k = 0; k < 32 * r; k++)
- T[k] = X[k] ^ *pV++;
- scryptBlockMix(X, T, r);
- }
- /* Convert output to little endian */
- for (i = 0, pB = B; i < 32 * r; i++) {
- uint32_t xtmp = X[i];
- *pB++ = xtmp & 0xff;
- *pB++ = (xtmp >> 8) & 0xff;
- *pB++ = (xtmp >> 16) & 0xff;
- *pB++ = (xtmp >> 24) & 0xff;
- }
-}
-
-#ifndef SIZE_MAX
-# define SIZE_MAX ((size_t)-1)
-#endif
-
-/*
- * Maximum power of two that will fit in uint64_t: this should work on
- * most (all?) platforms.
- */
-
-#define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1)
-
-/*
- * Maximum value of p * r:
- * p <= ((2^32-1) * hLen) / MFLen =>
- * p <= ((2^32-1) * 32) / (128 * r) =>
- * p * r <= (2^30-1)
- */
-
-#define SCRYPT_PR_MAX ((1 << 30) - 1)
-
-static int scrypt_alg(const char *pass, size_t passlen,
- const unsigned char *salt, size_t saltlen,
- uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
- unsigned char *key, size_t keylen)
-{
- int rv = 0;
- unsigned char *B;
- uint32_t *X, *V, *T;
- uint64_t i, Blen, Vlen;
-
- /* Sanity check parameters */
- /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
- if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
- return 0;
- /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
- if (p > SCRYPT_PR_MAX / r) {
- EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
- return 0;
- }
-
- /*
- * Need to check N: if 2^(128 * r / 8) overflows limit this is
- * automatically satisfied since N <= UINT64_MAX.
- */
-
- if (16 * r <= LOG2_UINT64_MAX) {
- if (N >= (((uint64_t)1) << (16 * r))) {
- EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
- return 0;
- }
- }
-
- /* Memory checks: check total allocated buffer size fits in uint64_t */
-
- /*
- * B size in section 5 step 1.S
- * Note: we know p * 128 * r < UINT64_MAX because we already checked
- * p * r < SCRYPT_PR_MAX
- */
- Blen = p * 128 * r;
- /*
- * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
- * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
- */
- if (Blen > INT_MAX) {
- EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
- return 0;
- }
-
- /*
- * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
- * This is combined size V, X and T (section 4)
- */
- i = UINT64_MAX / (32 * sizeof(uint32_t));
- if (N + 2 > i / r) {
- EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
- return 0;
- }
- Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
-
- /* check total allocated size fits in uint64_t */
- if (Blen > UINT64_MAX - Vlen) {
- EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
- return 0;
- }
-
- /* Check that the maximum memory doesn't exceed a size_t limits */
- if (maxmem > SIZE_MAX)
- maxmem = SIZE_MAX;
-
- if (Blen + Vlen > maxmem) {
- EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED);
- return 0;
- }
-
- /* If no key return to indicate parameters are OK */
- if (key == NULL)
- return 1;
-
- B = OPENSSL_malloc((size_t)(Blen + Vlen));
- if (B == NULL) {
- EVPerr(EVP_F_SCRYPT_ALG, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- X = (uint32_t *)(B + Blen);
- T = X + 32 * r;
- V = T + 32 * r;
- if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(),
- (int)Blen, B) == 0)
- goto err;
-
- for (i = 0; i < p; i++)
- scryptROMix(B + 128 * r * i, r, N, X, T, V);
-
- if (PKCS5_PBKDF2_HMAC(pass, passlen, B, (int)Blen, 1, EVP_sha256(),
- keylen, key) == 0)
- goto err;
- rv = 1;
- err:
- if (rv == 0)
- EVPerr(EVP_F_SCRYPT_ALG, EVP_R_PBKDF2_ERROR);
-
- OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
- return rv;
-}
-
-#endif
diff --git a/crypto/kdf/sshkdf.c b/crypto/kdf/sshkdf.c
deleted file mode 100644
index 4701c9cad1..0000000000
--- a/crypto/kdf/sshkdf.c
+++ /dev/null
@@ -1,292 +0,0 @@
-/*
- * Copyright 2018-2018 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
-
-#include <stdlib.h>
-#include <stdarg.h>
-#include <string.h>
-#include <openssl/evp.h>
-#include <openssl/kdf.h>
-#include "internal/cryptlib.h"
-#include "internal/numbers.h"
-#include "internal/evp_int.h"
-#include "kdf_local.h"
-
-/* See RFC 4253, Section 7.2 */
-
-static void kdf_sshkdf_reset(EVP_KDF_IMPL *impl);
-static int SSHKDF(const EVP_MD *evp_md,
- const unsigned char *key, size_t key_len,
- const unsigned char *xcghash, size_t xcghash_len,
- const unsigned char *session_id, size_t session_id_len,
- char type, unsigned char *okey, size_t okey_len);
-
-struct evp_kdf_impl_st {
- const EVP_MD *md;
- unsigned char *key; /* K */
- size_t key_len;
- unsigned char *xcghash; /* H */
- size_t xcghash_len;
- char type; /* X */
- unsigned char *session_id;
- size_t session_id_len;
-};
-
-static EVP_KDF_IMPL *kdf_sshkdf_new(void)
-{
- EVP_KDF_IMPL *impl;
-
- if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
- KDFerr(KDF_F_KDF_SSHKDF_NEW, ERR_R_MALLOC_FAILURE);
- return impl;
-}
-
-static void kdf_sshkdf_free(EVP_KDF_IMPL *impl)
-{
- kdf_sshkdf_reset(impl);
- OPENSSL_free(impl);
-}
-
-static void kdf_sshkdf_reset(EVP_KDF_IMPL *impl)
-{
- OPENSSL_clear_free(impl->key, impl->key_len);
- OPENSSL_clear_free(impl->xcghash, impl->xcghash_len);
- OPENSSL_clear_free(impl->session_id, impl->session_id_len);
- memset(impl, 0, sizeof(*impl));
-}
-
-static int kdf_sshkdf_parse_buffer_arg(unsigned char **dst, size_t *dst_len,
- va_list args)
-{
- const unsigned char *p;
- size_t len;
-
- p = va_arg(args, const unsigned char *);
- len = va_arg(args, size_t);
- OPENSSL_clear_free(*dst, *dst_len);
- *dst = OPENSSL_memdup(p, len);
- if (*dst == NULL)
- return 0;
-
- *dst_len = len;
- return 1;
-}
-
-static int kdf_sshkdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
-{
- int t;
-
- switch (cmd) {
- case EVP_KDF_CTRL_SET_MD:
- impl->md = va_arg(args, const EVP_MD *);
- if (impl->md == NULL)
- return 0;
-
- return 1;
-
- case EVP_KDF_CTRL_SET_KEY:
- return kdf_sshkdf_parse_buffer_arg(&impl->key,
- &impl->key_len, args);
-
- case EVP_KDF_CTRL_SET_SSHKDF_XCGHASH:
- return kdf_sshkdf_parse_buffer_arg(&impl->xcghash,
- &impl->xcghash_len, args);
-
- case EVP_KDF_CTRL_SET_SSHKDF_SESSION_ID:
- return kdf_sshkdf_parse_buffer_arg(&impl->session_id,
- &impl->session_id_len, args);
-
- case EVP_KDF_CTRL_SET_SSHKDF_TYPE:
- t = va_arg(args, int);
- if (t < 65 || t > 70) {
- KDFerr(KDF_F_KDF_SSHKDF_CTRL, KDF_R_VALUE_ERROR);
- return 0;
- }
-
- impl->type = (char)t;
- return 1;
-
- default:
- return -2;
-
- }
-}
-
-static int kdf_sshkdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
- const char *value)
-{
- if (value == NULL) {
- KDFerr(KDF_F_KDF_SSHKDF_CTRL_STR, KDF_R_VALUE_MISSING);
- return 0;
- }
-
- if (strcmp(type, "digest") == 0)
- return kdf_md2ctrl(impl, kdf_sshkdf_ctrl, EVP_KDF_CTRL_SET_MD, value);
- /* alias, for historical reasons */
- if (strcmp(type, "md") == 0)
- return kdf_md2ctrl(impl, kdf_sshkdf_ctrl, EVP_KDF_CTRL_SET_MD, value);
-
- if (strcmp(type, "key") == 0)
- return kdf_str2ctrl(impl, kdf_sshkdf_ctrl,
- EVP_KDF_CTRL_SET_KEY, value);
-
- if (strcmp(type, "hexkey") == 0)
- return kdf_hex2ctrl(impl, kdf_sshkdf_ctrl,
- EVP_KDF_CTRL_SET_KEY, value);
-
- if (strcmp(type, "xcghash") == 0)
- return kdf_str2ctrl(impl, kdf_sshkdf_ctrl,
- EVP_KDF_CTRL_SET_SSHKDF_XCGHASH, value);
-
- if (strcmp(type, "hexxcghash") == 0)
- return kdf_hex2ctrl(impl, kdf_sshkdf_ctrl,
- EVP_KDF_CTRL_SET_SSHKDF_XCGHASH, value);
-
- if (strcmp(type, "session_id") == 0)
- return kdf_str2ctrl(impl, kdf_sshkdf_ctrl,
- EVP_KDF_CTRL_SET_SSHKDF_SESSION_ID, value);
-
- if (strcmp(type, "hexsession_id") == 0)
- return kdf_hex2ctrl(impl, kdf_sshkdf_ctrl,
- EVP_KDF_CTRL_SET_SSHKDF_SESSION_ID, value);
-
- if (strcmp(type, "type") == 0) {
- if (strlen(value) != 1) {
- KDFerr(KDF_F_KDF_SSHKDF_CTRL_STR, KDF_R_VALUE_ERROR);
- return 0;
- }
-
- return call_ctrl(kdf_sshkdf_ctrl, impl, EVP_KDF_CTRL_SET_SSHKDF_TYPE,
- (int)value[0]);
- }
-
- KDFerr(KDF_F_KDF_SSHKDF_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE);
- return -2;
-}
-
-static size_t kdf_sshkdf_size(EVP_KDF_IMPL *impl)
-{
- return SIZE_MAX;
-}
-
-static int kdf_sshkdf_derive(EVP_KDF_IMPL *impl, unsigned char *key,
- size_t keylen)
-{
- if (impl->md == NULL) {
- KDFerr(KDF_F_KDF_SSHKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
- return 0;
- }
- if (impl->key == NULL) {
- KDFerr(KDF_F_KDF_SSHKDF_DERIVE, KDF_R_MISSING_KEY);
- return 0;
- }
- if (impl->xcghash == NULL) {
- KDFerr(KDF_F_KDF_SSHKDF_DERIVE, KDF_R_MISSING_XCGHASH);
- return 0;
- }
- if (impl->session_id == NULL) {
- KDFerr(KDF_F_KDF_SSHKDF_DERIVE, KDF_R_MISSING_SESSION_ID);
- return 0;
- }
- if (impl->type == 0) {
- KDFerr(KDF_F_KDF_SSHKDF_DERIVE, KDF_R_MISSING_TYPE);
- return 0;
- }
- return SSHKDF(impl->md, impl->key, impl->key_len,
- impl->xcghash, impl->xcghash_len,
- impl->session_id, impl->session_id_len,
- impl->type, key, keylen);
-}
-
-const EVP_KDF sshkdf_kdf_meth = {
- EVP_KDF_SSHKDF,
- kdf_sshkdf_new,
- kdf_sshkdf_free,
- kdf_sshkdf_reset,
- kdf_sshkdf_ctrl,
- kdf_sshkdf_ctrl_str,
- kdf_sshkdf_size,
- kdf_sshkdf_derive,
-};
-
-static int SSHKDF(const EVP_MD *evp_md,
- const unsigned char *key, size_t key_len,
- const unsigned char *xcghash, size_t xcghash_len,
- const unsigned char *session_id, size_t session_id_len,
- char type, unsigned char *okey, size_t okey_len)
-{
- EVP_MD_CTX *md = NULL;
- unsigned char digest[EVP_MAX_MD_SIZE];
- unsigned int dsize = 0;
- size_t cursize = 0;
- int ret = 0;
-
- md = EVP_MD_CTX_new();
- if (md == NULL)
- return 0;
-
- if (!EVP_DigestInit_ex(md, evp_md, NULL))
- goto out;
-
- if (!EVP_DigestUpdate(md, key, key_len))
- goto out;
-
- if (!EVP_DigestUpdate(md, xcghash, xcghash_len))
- goto out;
-
- if (!EVP_DigestUpdate(md, &type, 1))
- goto out;
-
- if (!EVP_DigestUpdate(md, session_id, session_id_len))
- goto out;
-
- if (!EVP_DigestFinal_ex(md, digest, &dsize))
- goto out;
-
- if (okey_len < dsize) {
- memcpy(okey, digest, okey_len);
- ret = 1;
- goto out;
- }
-
- memcpy(okey, digest, dsize);
-
- for (cursize = dsize; cursize < okey_len; cursize += dsize) {
-
- if (!EVP_DigestInit_ex(md, evp_md, NULL))
- goto out;
-
- if (!EVP_DigestUpdate(md, key, key_len))
- goto out;
-
- if (!EVP_DigestUpdate(md, xcghash, xcghash_len))
- goto out;
-
- if (!EVP_DigestUpdate(md, okey, cursize))
- goto out;
-
- if (!EVP_DigestFinal_ex(md, digest, &dsize))
- goto out;
-
- if (okey_len < cursize + dsize) {
- memcpy(okey + cursize, digest, okey_len - cursize);
- ret = 1;
- goto out;
- }
-
- memcpy(okey + cursize, digest, dsize);
- }
-
- ret = 1;
-
-out:
- EVP_MD_CTX_free(md);
- OPENSSL_cleanse(digest, EVP_MAX_MD_SIZE);
- return ret;
-}
-
diff --git a/crypto/kdf/sskdf.c b/crypto/kdf/sskdf.c
deleted file mode 100644
index b20eff2865..0000000000
--- a/crypto/kdf/sskdf.c
+++ /dev/null
@@ -1,558 +0,0 @@
-/*
- * Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
-
-/*
- * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
- * Section 4.1.
- *
- * The Single Step KDF algorithm is given by:
- *
- * Result(0) = empty bit string (i.e., the null string).
- * For i = 1 to reps, do the following:
- * Increment counter by 1.
- * Result(i) = Result(i - 1) || H(counter || Z || FixedInfo).
- * DKM = LeftmostBits(Result(reps), L))
- *
- * NOTES:
- * Z is a shared secret required to produce the derived key material.
- * counter is a 4 byte buffer.
- * FixedInfo is a bit string containing context specific data.
- * DKM is the output derived key material.
- * L is the required size of the DKM.
- * reps = [L / H_outputBits]
- * H(x) is the auxiliary function that can be either a hash, HMAC or KMAC.
- * H_outputBits is the length of the output of the auxiliary function H(x).
- *
- * Currently there is not a comprehensive list of test vectors for this
- * algorithm, especially for H(x) = HMAC and H(x) = KMAC.
- * Test vectors for H(x) = Hash are indirectly used by CAVS KAS tests.
- */
-#include <stdlib.h>
-#include <stdarg.h>
-#include <string.h>
-#include <openssl/hmac.h>
-#include <openssl/evp.h>
-#include <openssl/kdf.h>
-#include <openssl/core_names.h>
-#include <openssl/params.h>
-#include "internal/cryptlib.h"
-#include "internal/evp_int.h"
-#include "kdf_local.h"
-
-struct evp_kdf_impl_st {
- EVP_MAC *mac; /* H(x) = HMAC_hash OR H(x) = KMAC */
- const EVP_MD *md; /* H(x) = hash OR when H(x) = HMAC_hash */
- unsigned char *secret;
- size_t secret_len;
- unsigned char *info;
- size_t info_len;
- unsigned char *salt;
- size_t salt_len;
- size_t out_len; /* optional KMAC parameter */
-};
-
-#define SSKDF_MAX_INLEN (1<<30)
-#define SSKDF_KMAC128_DEFAULT_SALT_SIZE (168 - 4)
-#define SSKDF_KMAC256_DEFAULT_SALT_SIZE (136 - 4)
-
-/* KMAC uses a Customisation string of 'KDF' */
-static const unsigned char kmac_custom_str[] = { 0x4B, 0x44, 0x46 };
-
-/*
- * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
- * Section 4. One-Step Key Derivation using H(x) = hash(x)
- * Note: X9.63 also uses this code with the only difference being that the
- * counter is appended to the secret 'z'.
- * i.e.
- * result[i] = Hash(counter || z || info) for One Step OR
- * result[i] = Hash(z || counter || info) for X9.63.
- */
-static int SSKDF_hash_kdm(const EVP_MD *kdf_md,
- const unsigned char *z, size_t z_len,
- const unsigned char *info, size_t info_len,
- unsigned int append_ctr,
- unsigned char *derived_key, size_t derived_key_len)
-{
- int ret = 0, hlen;
- size_t counter, out_len, len = derived_key_len;
- unsigned char c[4];
- unsigned char mac[EVP_MAX_MD_SIZE];
- unsigned char *out = derived_key;
- EVP_MD_CTX *ctx = NULL, *ctx_init = NULL;
-
- if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN
- || derived_key_len > SSKDF_MAX_INLEN
- || derived_key_len == 0)
- return 0;
-
- hlen = EVP_MD_size(kdf_md);
- if (hlen <= 0)
- return 0;
- out_len = (size_t)hlen;
-
- ctx = EVP_MD_CTX_create();
- ctx_init = EVP_MD_CTX_create();
- if (ctx == NULL || ctx_init == NULL)
- goto end;
-
- if (!EVP_DigestInit(ctx_init, kdf_md))
- goto end;
-
- for (counter = 1;; counter++) {
- c[0] = (unsigned char)((counter >> 24) & 0xff);
- c[1] = (unsigned char)((counter >> 16) & 0xff);
- c[2] = (unsigned char)((counter >> 8) & 0xff);
- c[3] = (unsigned char)(counter & 0xff);
-
- if (!(EVP_MD_CTX_copy_ex(ctx, ctx_init)
- && (append_ctr || EVP_DigestUpdate(ctx, c, sizeof(c)))
- && EVP_DigestUpdate(ctx, z, z_len)
- && (!append_ctr || EVP_DigestUpdate(ctx, c, sizeof(c)))
- && EVP_DigestUpdate(ctx, info, info_len)))
- goto end;
- if (len >= out_len) {
- if (!EVP_DigestFinal_ex(ctx, out, NULL))
- goto end;
- out += out_len;
- len -= out_len;
- if (len == 0)
- break;
- } else {
- if (!EVP_DigestFinal_ex(ctx, mac, NULL))
- goto end;
- memcpy(out, mac, len);
- break;
- }
- }
- ret = 1;
-end:
- EVP_MD_CTX_destroy(ctx);
- EVP_MD_CTX_destroy(ctx_init);
- OPENSSL_cleanse(mac, sizeof(mac));
- return ret;
-}
-
-static int kmac_init(EVP_MAC_CTX *ctx, const unsigned char *custom,
- size_t custom_len, size_t kmac_out_len,
- size_t derived_key_len, unsigned char **out)
-{
- OSSL_PARAM params[2];
-
- /* Only KMAC has custom data - so return if not KMAC */
- if (custom == NULL)
- return 1;
-
- params[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_CUSTOM,
- (void *)custom, custom_len);
- params[1] = OSSL_PARAM_construct_end();
-
- if (!EVP_MAC_CTX_set_params(ctx, params))
- return 0;
-
- /* By default only do one iteration if kmac_out_len is not specified */
- if (kmac_out_len == 0)
- kmac_out_len = derived_key_len;
- /* otherwise check the size is valid */
- else if (!(kmac_out_len == derived_key_len
- || kmac_out_len == 20
- || kmac_out_len == 28
- || kmac_out_len == 32
- || kmac_out_len == 48
- || kmac_out_len == 64))
- return 0;
-
- params[0] = OSSL_PARAM_construct_size_t(OSSL_MAC_PARAM_SIZE,
- &kmac_out_len);
-
- if (EVP_MAC_CTX_set_params(ctx, params) <= 0)
- return 0;
-
- /*
- * For kmac the output buffer can be larger than EVP_MAX_MD_SIZE: so
- * alloc a buffer for this case.
- */
- if (kmac_out_len > EVP_MAX_MD_SIZE) {
- *out = OPENSSL_zalloc(kmac_out_len);
- if (*out == NULL)
- return 0;
- }
- return 1;
-}
-
-/*
- * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
- * Section 4. One-Step Key Derivation using MAC: i.e either
- * H(x) = HMAC-hash(salt, x) OR
- * H(x) = KMAC#(salt, x, outbits, CustomString='KDF')
- */
-static int SSKDF_mac_kdm(EVP_MAC *kdf_mac, const EVP_MD *hmac_md,
- const unsigned char *kmac_custom,
- size_t kmac_custom_len, size_t kmac_out_len,
- const unsigned char *salt, size_t salt_len,
- const unsigned char *z, size_t z_len,
- const unsigned char *info, size_t info_len,
- unsigned char *derived_key, size_t derived_key_len)
-{
- int ret = 0;
- size_t counter, out_len, len;
- unsigned char c[4];
- unsigned char mac_buf[EVP_MAX_MD_SIZE];
- unsigned char *out = derived_key;
- EVP_MAC_CTX *ctx = NULL, *ctx_init = NULL;
- unsigned char *mac = mac_buf, *kmac_buffer = NULL;
- OSSL_PARAM params[3];
- size_t params_n = 0;
-
- if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN
- || derived_key_len > SSKDF_MAX_INLEN
- || derived_key_len == 0)
- return 0;
-
- ctx_init = EVP_MAC_CTX_new(kdf_mac);
- if (ctx_init == NULL)
- goto end;
-
- if (hmac_md != NULL) {
- const char *mdname = EVP_MD_name(hmac_md);
- params[params_n++] =
- OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
- (char *)mdname, 0);
- }
- params[params_n++] =
- OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, (void *)salt,
- salt_len);
- params[params_n] = OSSL_PARAM_construct_end();
-
- if (!EVP_MAC_CTX_set_params(ctx_init, params))
- goto end;
-
- if (!kmac_init(ctx_init, kmac_custom, kmac_custom_len, kmac_out_len,
- derived_key_len, &kmac_buffer))
- goto end;
- if (kmac_buffer != NULL)
- mac = kmac_buffer;
-
- if (!EVP_MAC_init(ctx_init))
- goto end;
-
- out_len = EVP_MAC_size(ctx_init); /* output size */
- if (out_len <= 0)
- goto end;
- len = derived_key_len;
-
- for (counter = 1;; counter++) {
- c[0] = (unsigned char)((counter >> 24) & 0xff);
- c[1] = (unsigned char)((counter >> 16) & 0xff);
- c[2] = (unsigned char)((counter >> 8) & 0xff);
- c[3] = (unsigned char)(counter & 0xff);
-
- ctx = EVP_MAC_CTX_dup(ctx_init);
- if (!(ctx != NULL
- && EVP_MAC_update(ctx, c, sizeof(c))
- && EVP_MAC_update(ctx, z, z_len)
- && EVP_MAC_update(ctx, info, info_len)))
- goto end;
- if (len >= out_len) {
- if (!EVP_MAC_final(ctx, out, NULL, len))
- goto end;
- out += out_len;
- len -= out_len;
- if (len == 0)
- break;
- } else {
- if (!EVP_MAC_final(ctx, mac, NULL, len))
- goto end;
- memcpy(out, mac, len);
- break;
- }
- EVP_MAC_CTX_free(ctx);
- ctx = NULL;
- }
- ret = 1;
-end:
- if (kmac_buffer != NULL)
- OPENSSL_clear_free(kmac_buffer, kmac_out_len);
- else
- OPENSSL_cleanse(mac_buf, sizeof(mac_buf));
-
- EVP_MAC_CTX_free(ctx);
- EVP_MAC_CTX_free(ctx_init);
- return ret;
-}
-
-static EVP_KDF_IMPL *sskdf_new(void)
-{
- EVP_KDF_IMPL *impl;
-
- if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
- KDFerr(KDF_F_SSKDF_NEW, ERR_R_MALLOC_FAILURE);
- return impl;
-}
-
-static void sskdf_reset(EVP_KDF_IMPL *impl)
-{
- OPENSSL_clear_free(impl->secret, impl->secret_len);
- OPENSSL_clear_free(impl->info, impl->info_len);
- OPENSSL_clear_free(impl->salt, impl->salt_len);
- EVP_MAC_free(impl->mac);
-#if 0 /* TODO(3.0) When we switch to fetched MDs */
- EVP_MD_meth_free(impl->md);
-#endif
- memset(impl, 0, sizeof(*impl));
-}
-
-static void sskdf_free(EVP_KDF_IMPL *impl)
-{
- sskdf_reset(impl);
- OPENSSL_free(impl);
-}
-
-static int sskdf_set_buffer(va_list args, unsigned char **out, size_t *out_len)
-{
- const unsigned char *p;
- size_t len;
-
- p = va_arg(args, const unsigned char *);
- len = va_arg(args, size_t);
- if (len == 0 || p == NULL)
- return 1;
-
- OPENSSL_free(*out);
- *out = OPENSSL_memdup(p, len);
- if (*out == NULL)
- return 0;
-
- *out_len = len;
- return 1;
-}
-
-static int sskdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
-{
- const EVP_MD *md;
-
- switch (cmd) {
- case EVP_KDF_CTRL_SET_KEY:
- return sskdf_set_buffer(args, &impl->secret, &impl->secret_len);
-
- case EVP_KDF_CTRL_SET_SSKDF_INFO:
- return sskdf_set_buffer(args, &impl->info, &impl->info_len);
-
- case EVP_KDF_CTRL_SET_MD:
- md = va_arg(args, const EVP_MD *);
- if (md == NULL)
- return 0;
-
-#if 0 /* TODO(3.0) When we switch to fetched MDs */
- EVP_MD_meth_free(impl->md);
-#endif
- impl->md = md;
- return 1;
-
- case EVP_KDF_CTRL_SET_MAC:
- {
- const char *name;
- EVP_MAC *mac;
-
- name = va_arg(args, const char *);
- if (name == NULL)
- return 0;
-
- EVP_MAC_free(impl->mac);
- impl->mac = NULL;
-
- /*
- * TODO(3.0) add support for OPENSSL_CTX and properties in KDFs
- */
- mac = EVP_MAC_fetch(NULL, name, NULL);
- if (mac == NULL)
- return 0;
-
- impl->mac = mac;
- return 1;
- }
- case EVP_KDF_CTRL_SET_SALT:
- return sskdf_set_buffer(args, &impl->salt, &impl->salt_len);
-
- case EVP_KDF_CTRL_SET_MAC_SIZE:
- impl->out_len = va_arg(args, size_t);
- return 1;
-
- default:
- return -2;
- }
-}
-
-static int sskdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
- const char *value)
-{
- if (strcmp(type, "secret") == 0 || strcmp(type, "key") == 0)
- return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_KEY,
- value);
-
- if (strcmp(type, "hexsecret") == 0 || strcmp(type, "hexkey") == 0)
- return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_KEY,
- value);
-
- if (strcmp(type, "info") == 0)
- return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SSKDF_INFO,
- value);
-
- if (strcmp(type, "hexinfo") == 0)
- return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SSKDF_INFO,
- value);
-
- if (strcmp(type, "digest") == 0)
- return kdf_md2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_MD, value);
-
- if (strcmp(type, "mac") == 0)
- return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_MAC, value);
-
- if (strcmp(type, "salt") == 0)
- return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);
-
- if (strcmp(type, "hexsalt") == 0)
- return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);
-
-
- if (strcmp(type, "maclen") == 0) {
- int val = atoi(value);
- if (val < 0) {
- KDFerr(KDF_F_SSKDF_CTRL_STR, KDF_R_VALUE_ERROR);
- return 0;
- }
- return call_ctrl(sskdf_ctrl, impl, EVP_KDF_CTRL_SET_MAC_SIZE,
- (size_t)val);
- }
- return -2;
-}
-
-static size_t sskdf_size(EVP_KDF_IMPL *impl)
-{
- int len;
-
- if (impl->md == NULL) {
- KDFerr(KDF_F_SSKDF_SIZE, KDF_R_MISSING_MESSAGE_DIGEST);
- return 0;
- }
- len = EVP_MD_size(impl->md);
- return (len <= 0) ? 0 : (size_t)len;
-}
-
-static int sskdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen)
-{
- if (impl->secret == NULL) {
- KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_SECRET);
- return 0;
- }
-
- if (impl->mac != NULL) {
- /* H(x) = KMAC or H(x) = HMAC */
- int ret;
- const unsigned char *custom = NULL;
- size_t custom_len = 0;
- const char *macname;
- int default_salt_len;
-
- /*
- * TODO(3.0) investigate the necessity to have all these controls.
- * Why does KMAC require a salt length that's shorter than the MD
- * block size?
- */
- macname = EVP_MAC_name(impl->mac);
- if (strcmp(macname, OSSL_MAC_NAME_HMAC) == 0) {
- /* H(x) = HMAC(x, salt, hash) */
- if (impl->md == NULL) {
- KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
- return 0;
- }
- default_salt_len = EVP_MD_block_size(impl->md);
- if (default_salt_len <= 0)
- return 0;
- } else if (strcmp(macname, OSSL_MAC_NAME_KMAC128) == 0
- || strcmp(macname, OSSL_MAC_NAME_KMAC256) == 0) {
- /* H(x) = KMACzzz(x, salt, custom) */
- custom = kmac_custom_str;
- custom_len = sizeof(kmac_custom_str);
- if (strcmp(macname, OSSL_MAC_NAME_KMAC128) == 0)
- default_salt_len = SSKDF_KMAC128_DEFAULT_SALT_SIZE;
- else
- default_salt_len = SSKDF_KMAC256_DEFAULT_SALT_SIZE;
- } else {
- KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_UNSUPPORTED_MAC_TYPE);
- return 0;
- }
- /* If no salt is set then use a default_salt of zeros */
- if (impl->salt == NULL || impl->salt_len <= 0) {
- impl->salt = OPENSSL_zalloc(default_salt_len);
- if (impl->salt == NULL) {
- KDFerr(KDF_F_SSKDF_DERIVE, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- impl->salt_len = default_salt_len;
- }
- ret = SSKDF_mac_kdm(impl->mac, impl->md,
- custom, custom_len, impl->out_len,
- impl->salt, impl->salt_len,
- impl->secret, impl->secret_len,
- impl->info, impl->info_len, key, keylen);
- return ret;
- } else {
- /* H(x) = hash */
- if (impl->md == NULL) {
- KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
- return 0;
- }
- return SSKDF_hash_kdm(impl->md, impl->secret, impl->secret_len,
- impl->info, impl->info_len, 0, key, keylen);
- }
-}
-
-static int x963kdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen)
-{
- if (impl->secret == NULL) {
- KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_MISSING_SECRET);
- return 0;
- }
-
- if (impl->mac != NULL) {
- KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_NOT_SUPPORTED);
- return 0;
- } else {
- /* H(x) = hash */
- if (impl->md == NULL) {
- KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
- return 0;
- }
- return SSKDF_hash_kdm(impl->md, impl->secret, impl->secret_len,
- impl->info, impl->info_len, 1, key, keylen);
- }
-}
-
-const EVP_KDF ss_kdf_meth = {
- EVP_KDF_SS,
- sskdf_new,
- sskdf_free,
- sskdf_reset,
- sskdf_ctrl,
- sskdf_ctrl_str,
- sskdf_size,
- sskdf_derive
-};
-
-const EVP_KDF x963_kdf_meth = {
- EVP_KDF_X963,
- sskdf_new,
- sskdf_free,
- sskdf_reset,
- sskdf_ctrl,
- sskdf_ctrl_str,
- sskdf_size,
- x963kdf_derive
-};
diff --git a/crypto/kdf/tls1_prf.c b/crypto/kdf/tls1_prf.c
deleted file mode 100644
index edd7f05ce0..0000000000
--- a/crypto/kdf/tls1_prf.c
+++ /dev/null
@@ -1,375 +0,0 @@
-/*
- * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
-
-/*
- * Refer to "The TLS Protocol Version 1.0" Section 5
- * (https://tools.ietf.org/html/rfc2246#section-5) and
- * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
- * (https://tools.ietf.org/html/rfc5246#section-5).
- *
- * For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by:
- *
- * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
- * P_SHA-1(S2, label + seed)
- *
- * where P_MD5 and P_SHA-1 are defined by P_<hash>, below, and S1 and S2 are
- * two halves of the secret (with the possibility of one shared byte, in the
- * case where the length of the original secret is odd). S1 is taken from the
- * first half of the secret, S2 from the second half.
- *
- * For TLS v1.2 the TLS PRF algorithm is given by:
- *
- * PRF(secret, label, seed) = P_<hash>(secret, label + seed)
- *
- * where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as
- * those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect,
- * unless defined otherwise by the cipher suite.
- *
- * P_<hash> is an expansion function that uses a single hash function to expand
- * a secret and seed into an arbitrary quantity of output:
- *
- * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
- * HMAC_<hash>(secret, A(2) + seed) +
- * HMAC_<hash>(secret, A(3) + seed) + ...
- *
- * where + indicates concatenation. P_<hash> can be iterated as many times as
- * is necessary to produce the required quantity of data.
- *
- * A(i) is defined as:
- * A(0) = seed
- * A(i) = HMAC_<hash>(secret, A(i-1))
- */
-#include <stdio.h>
-#include <stdarg.h>
-#include <string.h>
-#include "internal/cryptlib.h"
-#include <openssl/evp.h>
-#include <openssl/kdf.h>
-#include <openssl/core_names.h>
-#include <openssl/params.h>
-#include "internal/evp_int.h"
-#include "kdf_local.h"
-
-static void kdf_tls1_prf_reset(EVP_KDF_IMPL *impl);
-static int tls1_prf_alg(const EVP_MD *md,
- const unsigned char *sec, size_t slen,
- const unsigned char *seed, size_t seed_len,
- unsigned char *out, size_t olen);
-
-#define TLS1_PRF_MAXBUF 1024
-
-/* TLS KDF kdf context structure */
-
-struct evp_kdf_impl_st {
- /* Digest to use for PRF */
- const EVP_MD *md;
- /* Secret value to use for PRF */
- unsigned char *sec;
- size_t seclen;
- /* Buffer of concatenated seed data */
- unsigned char seed[TLS1_PRF_MAXBUF];
- size_t seedlen;
-};
-
-static EVP_KDF_IMPL *kdf_tls1_prf_new(void)
-{
- EVP_KDF_IMPL *impl;
-
- if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
- KDFerr(KDF_F_KDF_TLS1_PRF_NEW, ERR_R_MALLOC_FAILURE);
- return impl;
-}
-
-static void kdf_tls1_prf_free(EVP_KDF_IMPL *impl)
-{
- kdf_tls1_prf_reset(impl);
- OPENSSL_free(impl);
-}
-
-static void kdf_tls1_prf_reset(EVP_KDF_IMPL *impl)
-{
- OPENSSL_clear_free(impl->sec, impl->seclen);
- OPENSSL_cleanse(impl->seed, impl->seedlen);
- memset(impl, 0, sizeof(*impl));
-}
-
-static int kdf_tls1_prf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
-{
- const unsigned char *p;
- size_t len;
- const EVP_MD *md;
-
- switch (cmd) {
- case EVP_KDF_CTRL_SET_MD:
- md = va_arg(args, const EVP_MD *);
- if (md == NULL)
- return 0;
-
- impl->md = md;
- return 1;
-
- case EVP_KDF_CTRL_SET_TLS_SECRET:
- p = va_arg(args, const unsigned char *);
- len = va_arg(args, size_t);
- OPENSSL_clear_free(impl->sec, impl->seclen);
- impl->sec = OPENSSL_memdup(p, len);
- if (impl->sec == NULL)
- return 0;
-
- impl->seclen = len;
- return 1;
-
- case EVP_KDF_CTRL_RESET_TLS_SEED:
- OPENSSL_cleanse(impl->seed, impl->seedlen);
- impl->seedlen = 0;
- return 1;
-
- case EVP_KDF_CTRL_ADD_TLS_SEED:
- p = va_arg(args, const unsigned char *);
- len = va_arg(args, size_t);
- if (len == 0 || p == NULL)
- return 1;
-
- if (len > (TLS1_PRF_MAXBUF - impl->seedlen))
- return 0;
-
- memcpy(impl->seed + impl->seedlen, p, len);
- impl->seedlen += len;
- return 1;
-
- default:
- return -2;
- }
-}
-
-static int kdf_tls1_prf_ctrl_str(EVP_KDF_IMPL *impl,
- const char *type, const char *value)
-{
- if (value == NULL) {
- KDFerr(KDF_F_KDF_TLS1_PRF_CTRL_STR, KDF_R_VALUE_MISSING);
- return 0;
- }
- if (strcmp(type, "digest") == 0)
- return kdf_md2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_SET_MD, value);
-
- if (strcmp(type, "secret") == 0)
- return kdf_str2ctrl(impl, kdf_tls1_prf_ctrl,
- EVP_KDF_CTRL_SET_TLS_SECRET, value);
-
- if (strcmp(type, "hexsecret") == 0)
- return kdf_hex2ctrl(impl, kdf_tls1_prf_ctrl,
- EVP_KDF_CTRL_SET_TLS_SECRET, value);
-
- if (strcmp(type, "seed") == 0)
- return kdf_str2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_ADD_TLS_SEED,
- value);
-
- if (strcmp(type, "hexseed") == 0)
- return kdf_hex2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_ADD_TLS_SEED,
- value);
-
- return -2;
-}
-
-static int kdf_tls1_prf_derive(EVP_KDF_IMPL *impl, unsigned char *key,
- size_t keylen)
-{
- if (impl->md == NULL) {
- KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
- return 0;
- }
- if (impl->sec == NULL) {
- KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_SECRET);
- return 0;
- }
- if (impl->seedlen == 0) {
- KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_SEED);
- return 0;
- }
- return tls1_prf_alg(impl->md, impl->sec, impl->seclen,
- impl->seed, impl->seedlen,
- key, keylen);
-}
-
-const EVP_KDF tls1_prf_kdf_meth = {
- EVP_KDF_TLS1_PRF,
- kdf_tls1_prf_new,
- kdf_tls1_prf_free,
- kdf_tls1_prf_reset,
- kdf_tls1_prf_ctrl,
- kdf_tls1_prf_ctrl_str,
- NULL,
- kdf_tls1_prf_derive
-};
-
-/*
- * Refer to "The TLS Protocol Version 1.0" Section 5
- * (https://tools.ietf.org/html/rfc2246#section-5) and
- * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
- * (https://tools.ietf.org/html/rfc5246#section-5).
- *
- * P_<hash> is an expansion function that uses a single hash function to expand
- * a secret and seed into an arbitrary quantity of output:
- *
- * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) +
- * HMAC_<hash>(secret, A(2) + seed) +
- * HMAC_<hash>(secret, A(3) + seed) + ...
- *
- * where + indicates concatenation. P_<hash> can be iterated as many times as
- * is necessary to produce the required quantity of data.
- *
- * A(i) is defined as:
- * A(0) = seed
- * A(i) = HMAC_<hash>(secret, A(i-1))
- */
-static int tls1_prf_P_hash(const EVP_MD *md,
- const unsigned char *sec, size_t sec_len,
- const unsigned char *seed, size_t seed_len,
- unsigned char *out, size_t olen)
-{
- size_t chunk;
- EVP_MAC *mac = NULL;
- EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL, *ctx_init = NULL;
- unsigned char Ai[EVP_MAX_MD_SIZE];
- size_t Ai_len;
- int ret = 0;
- OSSL_PARAM params[4];
- int mac_flags;
- const char *mdname = EVP_MD_name(md);
-
- mac = EVP_MAC_fetch(NULL, OSSL_MAC_NAME_HMAC, NULL); /* Implicit fetch */
- ctx_init = EVP_MAC_CTX_new(mac);
- if (ctx_init == NULL)
- goto err;
-
- /* TODO(3.0) rethink "flags", also see hmac.c in providers */
- mac_flags = EVP_MD_CTX_FLAG_NON_FIPS_ALLOW;
- params[0] = OSSL_PARAM_construct_int(OSSL_MAC_PARAM_FLAGS, &mac_flags);
- params[1] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
- (char *)mdname, 0);
- params[2] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
- (void *)sec, sec_len);
- params[3] = OSSL_PARAM_construct_end();
- if (!EVP_MAC_CTX_set_params(ctx_init, params))
- goto err;
- if (!EVP_MAC_init(ctx_init))
- goto err;
- chunk = EVP_MAC_size(ctx_init);
- if (chunk == 0)
- goto err;
- /* A(0) = seed */
- ctx_Ai = EVP_MAC_CTX_dup(ctx_init);
- if (ctx_Ai == NULL)
- goto err;
- if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len))
- goto err;
-
- for (;;) {
- /* calc: A(i) = HMAC_<hash>(secret, A(i-1)) */
- if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len, sizeof(Ai)))
- goto err;
- EVP_MAC_CTX_free(ctx_Ai);
- ctx_Ai = NULL;
-
- /* calc next chunk: HMAC_<hash>(secret, A(i) + seed) */
- ctx = EVP_MAC_CTX_dup(ctx_init);
- if (ctx == NULL)
- goto err;
- if (!EVP_MAC_update(ctx, Ai, Ai_len))
- goto err;
- /* save state for calculating next A(i) value */
- if (olen > chunk) {
- ctx_Ai = EVP_MAC_CTX_dup(ctx);
- if (ctx_Ai == NULL)
- goto err;
- }
- if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len))
- goto err;
- if (olen <= chunk) {
- /* last chunk - use Ai as temp bounce buffer */
- if (!EVP_MAC_final(ctx, Ai, &Ai_len, sizeof(Ai)))
- goto err;
- memcpy(out, Ai, olen);
- break;
- }
- if (!EVP_MAC_final(ctx, out, NULL, olen))
- goto err;
- EVP_MAC_CTX_free(ctx);
- ctx = NULL;
- out += chunk;
- olen -= chunk;
- }
- ret = 1;
- err:
- EVP_MAC_CTX_free(ctx);
- EVP_MAC_CTX_free(ctx_Ai);
- EVP_MAC_CTX_free(ctx_init);
- EVP_MAC_free(mac);
- OPENSSL_cleanse(Ai, sizeof(Ai));
- return ret;
-}
-
-/*
- * Refer to "The TLS Protocol Version 1.0" Section 5
- * (https://tools.ietf.org/html/rfc2246#section-5) and
- * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5
- * (https://tools.ietf.org/html/rfc5246#section-5).
- *
- * For TLS v1.0 and TLS v1.1:
- *
- * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR
- * P_SHA-1(S2, label + seed)
- *
- * S1 is taken from the first half of the secret, S2 from the second half.
- *
- * L_S = length in bytes of secret;
- * L_S1 = L_S2 = ceil(L_S / 2);
- *
- * For TLS v1.2:
- *
- * PRF(secret, label, seed) = P_<hash>(secret, label + seed)
- */
-static int tls1_prf_alg(const EVP_MD *md,
- const unsigned char *sec, size_t slen,
- const unsigned char *seed, size_t seed_len,
- unsigned char *out, size_t olen)
-{
- if (EVP_MD_type(md) == NID_md5_sha1) {
- /* TLS v1.0 and TLS v1.1 */
- size_t i;
- unsigned char *tmp;
- /* calc: L_S1 = L_S2 = ceil(L_S / 2) */
- size_t L_S1 = (slen + 1) / 2;
- size_t L_S2 = L_S1;
-
- if (!tls1_prf_P_hash(EVP_md5(), sec, L_S1,
- seed, seed_len, out, olen))
- return 0;
-
- if ((tmp = OPENSSL_malloc(olen)) == NULL) {
- KDFerr(KDF_F_TLS1_PRF_ALG, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- if (!tls1_prf_P_hash(EVP_sha1(), sec + slen - L_S2, L_S2,
- seed, seed_len, tmp, olen)) {
- OPENSSL_clear_free(tmp, olen);
- return 0;
- }
- for (i = 0; i < olen; i++)
- out[i] ^= tmp[i];
- OPENSSL_clear_free(tmp, olen);
- return 1;
- }
-
- /* TLS v1.2 */
- if (!tls1_prf_P_hash(md, sec, slen, seed, seed_len, out, olen))
- return 0;
-
- return 1;
-}
diff --git a/crypto/kdf/x942kdf.c b/crypto/kdf/x942kdf.c
deleted file mode 100644
index ce9ad61035..0000000000
--- a/crypto/kdf/x942kdf.c
+++ /dev/null
@@ -1,407 +0,0 @@
-/*
- * Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
-
-#include "e_os.h"
-
-#ifndef OPENSSL_NO_CMS
-
-# include <stdlib.h>
-# include <stdarg.h>
-# include <string.h>
-# include <openssl/hmac.h>
-# include <openssl/cms.h>
-# include <openssl/evp.h>
-# include <openssl/kdf.h>
-# include <openssl/x509.h>
-# include <openssl/obj_mac.h>
-# include "internal/cryptlib.h"
-# include "internal/evp_int.h"
-# include "kdf_local.h"
-
-# define X942KDF_MAX_INLEN (1 << 30)
-
-struct evp_kdf_impl_st {
- const EVP_MD *md;
- unsigned char *secret;
- size_t secret_len;
- int cek_nid;
- unsigned char *ukm;
- size_t ukm_len;
- size_t dkm_len;
-};
-
-/* A table of allowed wrapping algorithms and the associated output lengths */
-static const struct {
- int nid;
- size_t keklen; /* size in bytes */
-} kek_algs[] = {
- { NID_id_smime_alg_CMS3DESwrap, 24 },
- { NID_id_smime_alg_CMSRC2wrap, 16 },
- { NID_id_aes128_wrap, 16 },
- { NID_id_aes192_wrap, 24 },
- { NID_id_aes256_wrap, 32 },
- { NID_id_camellia128_wrap, 16 },
- { NID_id_camellia192_wrap, 24 },
- { NID_id_camellia256_wrap, 32 }
-};
-
-/* Skip past an ASN1 structure: for OBJECT skip content octets too */
-static int skip_asn1(unsigned char **pp, long *plen, int exptag)
-{
- int i, tag, xclass;
- long tmplen;
- const unsigned char *q = *pp;
-
- i = ASN1_get_object(&q, &tmplen, &tag, &xclass, *plen);
- if ((i & 0x80) != 0 || tag != exptag || xclass != V_ASN1_UNIVERSAL)
- return 0;
- if (tag == V_ASN1_OBJECT)
- q += tmplen;
- *pp = (unsigned char *)q;
- *plen -= q - *pp;
- return 1;
-}
-
-/*
- * Encode the other info structure.
- *
- * RFC2631 Section 2.1.2 Contains the following definition for otherinfo
- *
- * OtherInfo ::= SEQUENCE {
- * keyInfo KeySpecificInfo,
- * partyAInfo [0] OCTET STRING OPTIONAL,
- * suppPubInfo [2] OCTET STRING
- * }
- *
- * KeySpecificInfo ::= SEQUENCE {
- * algorithm OBJECT IDENTIFIER,
- * counter OCTET STRING SIZE (4..4)
- * }
- *
- * |nid| is the algorithm object identifier.
- * |keylen| is the length (in bytes) of the generated KEK. It is stored into
- * suppPubInfo (in bits).
- * |ukm| is the optional user keying material that is stored into partyAInfo. It
- * can be NULL.
- * |ukmlen| is the user keying material length (in bytes).
- * |der| is the returned encoded data. It must be freed by the caller.
- * |der_len| is the returned size of the encoded data.
- * |out_ctr| returns a pointer to the counter data which is embedded inside the
- * encoded data. This allows the counter bytes to be updated without re-encoding.
- *
- * Returns: 1 if successfully encoded, or 0 otherwise.
- * Assumptions: |der|, |der_len| & |out_ctr| are not NULL.
- */
-static int x942_encode_otherinfo(int nid, size_t keylen,
- const unsigned char *ukm, size_t ukmlen,
- unsigned char **der, size_t *der_len,
- unsigned char **out_ctr)
-{
- unsigned char *p, *encoded = NULL;
- int ret = 0, encoded_len;
- long tlen;
- /* "magic" value to check offset is sane */
- static unsigned char ctr[4] = { 0x00, 0x00, 0x00, 0x01 };
- X509_ALGOR *ksi = NULL;
- ASN1_OBJECT *alg_oid = NULL;
- ASN1_OCTET_STRING *ctr_oct = NULL, *ukm_oct = NULL;
-
- /* set the KeySpecificInfo - which contains an algorithm oid and counter */
- ksi = X509_ALGOR_new();
- alg_oid = OBJ_dup(OBJ_nid2obj(nid));
- ctr_oct = ASN1_OCTET_STRING_new();
- if (ksi == NULL
- || alg_oid == NULL
- || ctr_oct == NULL
- || !ASN1_OCTET_STRING_set(ctr_oct, ctr, sizeof(ctr))
- || !X509_ALGOR_set0(ksi, alg_oid, V_ASN1_OCTET_STRING, ctr_oct))
- goto err;
- /* NULL these as they now belong to ksi */
- alg_oid = NULL;
- ctr_oct = NULL;
-
- /* Set the optional partyAInfo */
- if (ukm != NULL) {
- ukm_oct = ASN1_OCTET_STRING_new();
- if (ukm_oct == NULL)
- goto err;
- ASN1_OCTET_STRING_set(ukm_oct, (unsigned char *)ukm, ukmlen);
- }
- /* Generate the OtherInfo DER data */
- encoded_len = CMS_SharedInfo_encode(&encoded, ksi, ukm_oct, keylen);
- if (encoded_len <= 0)
- goto err;
-
- /* Parse the encoded data to find the offset of the counter data */
- p = encoded;
- tlen = (long)encoded_len;
- if (skip_asn1(&p, &tlen, V_ASN1_SEQUENCE)
- && skip_asn1(&p, &tlen, V_ASN1_SEQUENCE)
- && skip_asn1(&p, &tlen, V_ASN1_OBJECT)
- && skip_asn1(&p, &tlen, V_ASN1_OCTET_STRING)
- && CRYPTO_memcmp(p, ctr, 4) == 0) {
- *out_ctr = p;
- *der = encoded;
- *der_len = (size_t)encoded_len;
- ret = 1;
- }
-err:
- if (ret != 1)
- OPENSSL_free(encoded);
- ASN1_OCTET_STRING_free(ctr_oct);
- ASN1_OCTET_STRING_free(ukm_oct);
- ASN1_OBJECT_free(alg_oid);
- X509_ALGOR_free(ksi);
- return ret;
-}
-
-static int x942kdf_hash_kdm(const EVP_MD *kdf_md,
- const unsigned char *z, size_t z_len,
- const unsigned char *other, size_t other_len,
- unsigned char *ctr,
- unsigned char *derived_key, size_t derived_key_len)
-{
- int ret = 0, hlen;
- size_t counter, out_len, len = derived_key_len;
- unsigned char mac[EVP_MAX_MD_SIZE];
- unsigned char *out = derived_key;
- EVP_MD_CTX *ctx = NULL, *ctx_init = NULL;
-
- if (z_len > X942KDF_MAX_INLEN || other_len > X942KDF_MAX_INLEN
- || derived_key_len > X942KDF_MAX_INLEN
- || derived_key_len == 0) {
- KDFerr(KDF_F_X942KDF_HASH_KDM, KDF_R_BAD_LENGTH);
- return 0;
- }
-
- hlen = EVP_MD_size(kdf_md);
- if (hlen <= 0)
- return 0;
- out_len = (size_t)hlen;
-
- ctx = EVP_MD_CTX_create();
- ctx_init = EVP_MD_CTX_create();
- if (ctx == NULL || ctx_init == NULL)
- goto end;
-
- if (!EVP_DigestInit(ctx_init, kdf_md))
- goto end;
-
- for (counter = 1;; counter++) {
- /* updating the ctr modifies 4 bytes in the 'other' buffer */
- ctr[0] = (unsigned char)((counter >> 24) & 0xff);
- ctr[1] = (unsigned char)((counter >> 16) & 0xff);
- ctr[2] = (unsigned char)((counter >> 8) & 0xff);
- ctr[3] = (unsigned char)(counter & 0xff);
-
- if (!EVP_MD_CTX_copy_ex(ctx, ctx_init)
- || !EVP_DigestUpdate(ctx, z, z_len)
- || !EVP_DigestUpdate(ctx, other, other_len))
- goto end;
- if (len >= out_len) {
- if (!EVP_DigestFinal_ex(ctx, out, NULL))
- goto end;
- out += out_len;
- len -= out_len;
- if (len == 0)
- break;
- } else {
- if (!EVP_DigestFinal_ex(ctx, mac, NULL))
- goto end;
- memcpy(out, mac, len);
- break;
- }
- }
- ret = 1;
-end:
- EVP_MD_CTX_free(ctx);
- EVP_MD_CTX_free(ctx_init);
- OPENSSL_cleanse(mac, sizeof(mac));
- return ret;
-}
-
-static EVP_KDF_IMPL *x942kdf_new(void)
-{
- EVP_KDF_IMPL *impl;
-
- if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
- KDFerr(KDF_F_X942KDF_NEW, ERR_R_MALLOC_FAILURE);
- return impl;
-}
-
-static void x942kdf_reset(EVP_KDF_IMPL *impl)
-{
- OPENSSL_clear_free(impl->secret, impl->secret_len);
- OPENSSL_clear_free(impl->ukm, impl->ukm_len);
- memset(impl, 0, sizeof(*impl));
-}
-
-static void x942kdf_free(EVP_KDF_IMPL *impl)
-{
- x942kdf_reset(impl);
- OPENSSL_free(impl);
-}
-
-static int x942kdf_set_buffer(va_list args, unsigned char **out, size_t *out_len)
-{
- const unsigned char *p;
- size_t len;
-
- p = va_arg(args, const unsigned char *);
- len = va_arg(args, size_t);
- if (len == 0 || p == NULL)
- return 1;
-
- OPENSSL_free(*out);
- *out = OPENSSL_memdup(p, len);
- if (*out == NULL)
- return 0;
-
- *out_len = len;
- return 1;
-}
-
-static int x942kdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
-{
- const EVP_MD *md;
- char *alg_str = NULL;
- size_t i;
-
- switch (cmd) {
- case EVP_KDF_CTRL_SET_MD:
- md = va_arg(args, const EVP_MD *);
- if (md == NULL)
- return 0;
-
- impl->md = md;
- return 1;
-
- case EVP_KDF_CTRL_SET_KEY:
- return x942kdf_set_buffer(args, &impl->secret, &impl->secret_len);
-
- case EVP_KDF_CTRL_SET_UKM:
- return x942kdf_set_buffer(args, &impl->ukm, &impl->ukm_len);
-
- case EVP_KDF_CTRL_SET_CEK_ALG:
- alg_str = va_arg(args, char *);
- if (alg_str == NULL)
- return 0;
- impl->cek_nid = OBJ_sn2nid(alg_str);
- for (i = 0; i < (size_t)OSSL_NELEM(kek_algs); ++i) {
- if (kek_algs[i].nid == impl->cek_nid) {
- impl->dkm_len = kek_algs[i].keklen;
- return 1;
- }
- }
- KDFerr(KDF_F_X942KDF_CTRL, KDF_R_UNSUPPORTED_CEK_ALG);
- return 0;
-
- default:
- return -2;
- }
-}
-
-static int x942kdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
- const char *value)
-{
- if (strcmp(type, "digest") == 0)
- return kdf_md2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_MD, value);
-
- if (strcmp(type, "secret") == 0 || strcmp(type, "key") == 0)
- return kdf_str2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_KEY,
- value);
-
- if (strcmp(type, "hexsecret") == 0 || strcmp(type, "hexkey") == 0)
- return kdf_hex2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_KEY,
- value);
-
- if (strcmp(type, "ukm") == 0)
- return kdf_str2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_UKM,
- value);
-
- if (strcmp(type, "hexukm") == 0)
- return kdf_hex2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_UKM,
- value);
-
- if (strcmp(type, "cekalg") == 0)
- return kdf_str2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_CEK_ALG,
- value);
-
- return -2;
-}
-
-static size_t x942kdf_size(EVP_KDF_IMPL *impl)
-{
- int len;
-
- if (impl->md == NULL) {
- KDFerr(KDF_F_X942KDF_SIZE, KDF_R_MISSING_MESSAGE_DIGEST);
- return 0;
- }
- len = EVP_MD_size(impl->md);
- return (len <= 0) ? 0 : (size_t)len;
-}
-
-static int x942kdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen)
-{
- int ret = 0;
- unsigned char *ctr;
- unsigned char *der = NULL;
- size_t der_len = 0;
-
- if (impl->secret == NULL) {
- KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_MISSING_SECRET);
- return 0;
- }
- if (impl->md == NULL) {
- KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
- return 0;
- }
- if (impl->cek_nid == NID_undef) {
- KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_MISSING_CEK_ALG);
- return 0;
- }
- if (impl->ukm != NULL && impl->ukm_len >= X942KDF_MAX_INLEN) {
- /*
- * Note the ukm length MUST be 512 bits.
- * For backwards compatibility the old check is being done.
- */
- KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_INAVLID_UKM_LEN);
- return 0;
- }
- if (keylen != impl->dkm_len) {
- KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_MISSING_CEK_ALG);
- return 0;
- }
- /* generate the otherinfo der */
- if (!x942_encode_otherinfo(impl->cek_nid, impl->dkm_len,
- impl->ukm, impl->ukm_len,
- &der, &der_len, &ctr)) {
- KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_BAD_ENCODING);
- return 0;
- }
- ret = x942kdf_hash_kdm(impl->md, impl->secret, impl->secret_len,
- der, der_len, ctr, key, keylen);
- OPENSSL_free(der);
- return ret;
-}
-
-const EVP_KDF x942_kdf_meth = {
- EVP_KDF_X942,
- x942kdf_new,
- x942kdf_free,
- x942kdf_reset,
- x942kdf_ctrl,
- x942kdf_ctrl_str,
- x942kdf_size,
- x942kdf_derive
-};
-
-#endif /* OPENSSL_NO_CMS */