diff options
author | Pauli <paul.dale@oracle.com> | 2019-08-21 00:00:12 +0200 |
---|---|---|
committer | Pauli <paul.dale@oracle.com> | 2019-09-06 11:27:57 +0200 |
commit | 5eb43d382b3eb3fb6950cc8e0dce82886e23e984 (patch) | |
tree | b32e637f7349322afae2edaca63690b6b7d59d69 /crypto/kdf | |
parent | Teach TLSProxy how to parse CertificateRequest messages (diff) | |
download | openssl-5eb43d382b3eb3fb6950cc8e0dce82886e23e984.tar.xz openssl-5eb43d382b3eb3fb6950cc8e0dce82886e23e984.zip |
Move KDFs to the provider.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9662)
Diffstat (limited to 'crypto/kdf')
-rw-r--r-- | crypto/kdf/hkdf.c | 440 | ||||
-rw-r--r-- | crypto/kdf/pbkdf2.c | 324 | ||||
-rw-r--r-- | crypto/kdf/scrypt.c | 506 | ||||
-rw-r--r-- | crypto/kdf/sshkdf.c | 292 | ||||
-rw-r--r-- | crypto/kdf/sskdf.c | 558 | ||||
-rw-r--r-- | crypto/kdf/tls1_prf.c | 375 | ||||
-rw-r--r-- | crypto/kdf/x942kdf.c | 407 |
7 files changed, 0 insertions, 2902 deletions
diff --git a/crypto/kdf/hkdf.c b/crypto/kdf/hkdf.c deleted file mode 100644 index 33c74da86a..0000000000 --- a/crypto/kdf/hkdf.c +++ /dev/null @@ -1,440 +0,0 @@ -/* - * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. - * - * Licensed under the Apache License 2.0 (the "License"). You may not use - * this file except in compliance with the License. You can obtain a copy - * in the file LICENSE in the source distribution or at - * https://www.openssl.org/source/license.html - */ - -#include <stdlib.h> -#include <stdarg.h> -#include <string.h> -#include <openssl/hmac.h> -#include <openssl/evp.h> -#include <openssl/kdf.h> -#include "internal/cryptlib.h" -#include "internal/numbers.h" -#include "internal/evp_int.h" -#include "kdf_local.h" - -#define HKDF_MAXBUF 1024 - -static void kdf_hkdf_reset(EVP_KDF_IMPL *impl); -static int HKDF(const EVP_MD *evp_md, - const unsigned char *salt, size_t salt_len, - const unsigned char *key, size_t key_len, - const unsigned char *info, size_t info_len, - unsigned char *okm, size_t okm_len); -static int HKDF_Extract(const EVP_MD *evp_md, - const unsigned char *salt, size_t salt_len, - const unsigned char *ikm, size_t ikm_len, - unsigned char *prk, size_t prk_len); -static int HKDF_Expand(const EVP_MD *evp_md, - const unsigned char *prk, size_t prk_len, - const unsigned char *info, size_t info_len, - unsigned char *okm, size_t okm_len); - -struct evp_kdf_impl_st { - int mode; - const EVP_MD *md; - unsigned char *salt; - size_t salt_len; - unsigned char *key; - size_t key_len; - unsigned char info[HKDF_MAXBUF]; - size_t info_len; -}; - -static EVP_KDF_IMPL *kdf_hkdf_new(void) -{ - EVP_KDF_IMPL *impl; - - if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL) - KDFerr(KDF_F_KDF_HKDF_NEW, ERR_R_MALLOC_FAILURE); - return impl; -} - -static void kdf_hkdf_free(EVP_KDF_IMPL *impl) -{ - kdf_hkdf_reset(impl); - OPENSSL_free(impl); -} - -static void kdf_hkdf_reset(EVP_KDF_IMPL *impl) -{ - OPENSSL_free(impl->salt); - OPENSSL_clear_free(impl->key, impl->key_len); - OPENSSL_cleanse(impl->info, impl->info_len); - memset(impl, 0, sizeof(*impl)); -} - -static int kdf_hkdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args) -{ - const unsigned char *p; - size_t len; - const EVP_MD *md; - - switch (cmd) { - case EVP_KDF_CTRL_SET_MD: - md = va_arg(args, const EVP_MD *); - if (md == NULL) - return 0; - - impl->md = md; - return 1; - - case EVP_KDF_CTRL_SET_HKDF_MODE: - impl->mode = va_arg(args, int); - return 1; - - case EVP_KDF_CTRL_SET_SALT: - p = va_arg(args, const unsigned char *); - len = va_arg(args, size_t); - if (len == 0 || p == NULL) - return 1; - - OPENSSL_free(impl->salt); - impl->salt = OPENSSL_memdup(p, len); - if (impl->salt == NULL) - return 0; - - impl->salt_len = len; - return 1; - - case EVP_KDF_CTRL_SET_KEY: - p = va_arg(args, const unsigned char *); - len = va_arg(args, size_t); - OPENSSL_clear_free(impl->key, impl->key_len); - impl->key = OPENSSL_memdup(p, len); - if (impl->key == NULL) - return 0; - - impl->key_len = len; - return 1; - - case EVP_KDF_CTRL_RESET_HKDF_INFO: - OPENSSL_cleanse(impl->info, impl->info_len); - impl->info_len = 0; - return 1; - - case EVP_KDF_CTRL_ADD_HKDF_INFO: - p = va_arg(args, const unsigned char *); - len = va_arg(args, size_t); - if (len == 0 || p == NULL) - return 1; - - if (len > (HKDF_MAXBUF - impl->info_len)) - return 0; - - memcpy(impl->info + impl->info_len, p, len); - impl->info_len += len; - return 1; - - default: - return -2; - } -} - -static int kdf_hkdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type, - const char *value) -{ - if (strcmp(type, "mode") == 0) { - int mode; - - if (strcmp(value, "EXTRACT_AND_EXPAND") == 0) - mode = EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND; - else if (strcmp(value, "EXTRACT_ONLY") == 0) - mode = EVP_KDF_HKDF_MODE_EXTRACT_ONLY; - else if (strcmp(value, "EXPAND_ONLY") == 0) - mode = EVP_KDF_HKDF_MODE_EXPAND_ONLY; - else - return 0; - - return call_ctrl(kdf_hkdf_ctrl, impl, EVP_KDF_CTRL_SET_HKDF_MODE, mode); - } - - if (strcmp(type, "digest") == 0) - return kdf_md2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_MD, value); - - if (strcmp(type, "salt") == 0) - return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_SALT, value); - - if (strcmp(type, "hexsalt") == 0) - return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_SALT, value); - - if (strcmp(type, "key") == 0) - return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_KEY, value); - - if (strcmp(type, "hexkey") == 0) - return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_SET_KEY, value); - - if (strcmp(type, "info") == 0) - return kdf_str2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_ADD_HKDF_INFO, - value); - - if (strcmp(type, "hexinfo") == 0) - return kdf_hex2ctrl(impl, kdf_hkdf_ctrl, EVP_KDF_CTRL_ADD_HKDF_INFO, - value); - - return -2; -} - -static size_t kdf_hkdf_size(EVP_KDF_IMPL *impl) -{ - int sz; - - if (impl->mode != EVP_KDF_HKDF_MODE_EXTRACT_ONLY) - return SIZE_MAX; - - if (impl->md == NULL) { - KDFerr(KDF_F_KDF_HKDF_SIZE, KDF_R_MISSING_MESSAGE_DIGEST); - return 0; - } - sz = EVP_MD_size(impl->md); - if (sz < 0) - return 0; - - return sz; -} - -static int kdf_hkdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, - size_t keylen) -{ - if (impl->md == NULL) { - KDFerr(KDF_F_KDF_HKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST); - return 0; - } - if (impl->key == NULL) { - KDFerr(KDF_F_KDF_HKDF_DERIVE, KDF_R_MISSING_KEY); - return 0; - } - - switch (impl->mode) { - case EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND: - return HKDF(impl->md, impl->salt, impl->salt_len, impl->key, - impl->key_len, impl->info, impl->info_len, key, - keylen); - - case EVP_KDF_HKDF_MODE_EXTRACT_ONLY: - return HKDF_Extract(impl->md, impl->salt, impl->salt_len, impl->key, - impl->key_len, key, keylen); - - case EVP_KDF_HKDF_MODE_EXPAND_ONLY: - return HKDF_Expand(impl->md, impl->key, impl->key_len, impl->info, - impl->info_len, key, keylen); - - default: - return 0; - } -} - -const EVP_KDF hkdf_kdf_meth = { - EVP_KDF_HKDF, - kdf_hkdf_new, - kdf_hkdf_free, - kdf_hkdf_reset, - kdf_hkdf_ctrl, - kdf_hkdf_ctrl_str, - kdf_hkdf_size, - kdf_hkdf_derive -}; - -/* - * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)" - * Section 2 (https://tools.ietf.org/html/rfc5869#section-2) and - * "Cryptographic Extraction and Key Derivation: The HKDF Scheme" - * Section 4.2 (https://eprint.iacr.org/2010/264.pdf). - * - * From the paper: - * The scheme HKDF is specified as: - * HKDF(XTS, SKM, CTXinfo, L) = K(1) | K(2) | ... | K(t) - * - * where: - * SKM is source key material - * XTS is extractor salt (which may be null or constant) - * CTXinfo is context information (may be null) - * L is the number of key bits to be produced by KDF - * k is the output length in bits of the hash function used with HMAC - * t = ceil(L/k) - * the value K(t) is truncated to its first d = L mod k bits. - * - * From RFC 5869: - * 2.2. Step 1: Extract - * HKDF-Extract(salt, IKM) -> PRK - * 2.3. Step 2: Expand - * HKDF-Expand(PRK, info, L) -> OKM - */ -static int HKDF(const EVP_MD *evp_md, - const unsigned char *salt, size_t salt_len, - const unsigned char *ikm, size_t ikm_len, - const unsigned char *info, size_t info_len, - unsigned char *okm, size_t okm_len) -{ - unsigned char prk[EVP_MAX_MD_SIZE]; - int ret, sz; - size_t prk_len; - - sz = EVP_MD_size(evp_md); - if (sz < 0) - return 0; - prk_len = (size_t)sz; - - /* Step 1: HKDF-Extract(salt, IKM) -> PRK */ - if (!HKDF_Extract(evp_md, salt, salt_len, ikm, ikm_len, prk, prk_len)) - return 0; - - /* Step 2: HKDF-Expand(PRK, info, L) -> OKM */ - ret = HKDF_Expand(evp_md, prk, prk_len, info, info_len, okm, okm_len); - OPENSSL_cleanse(prk, sizeof(prk)); - - return ret; -} - -/* - * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)" - * Section 2.2 (https://tools.ietf.org/html/rfc5869#section-2.2). - * - * 2.2. Step 1: Extract - * - * HKDF-Extract(salt, IKM) -> PRK - * - * Options: - * Hash a hash function; HashLen denotes the length of the - * hash function output in octets - * - * Inputs: - * salt optional salt value (a non-secret random value); - * if not provided, it is set to a string of HashLen zeros. - * IKM input keying material - * - * Output: - * PRK a pseudorandom key (of HashLen octets) - * - * The output PRK is calculated as follows: - * - * PRK = HMAC-Hash(salt, IKM) - */ -static int HKDF_Extract(const EVP_MD *evp_md, - const unsigned char *salt, size_t salt_len, - const unsigned char *ikm, size_t ikm_len, - unsigned char *prk, size_t prk_len) -{ - int sz = EVP_MD_size(evp_md); - - if (sz < 0) - return 0; - if (prk_len != (size_t)sz) { - KDFerr(KDF_F_HKDF_EXTRACT, KDF_R_WRONG_OUTPUT_BUFFER_SIZE); - return 0; - } - /* calc: PRK = HMAC-Hash(salt, IKM) */ - return HMAC(evp_md, salt, salt_len, ikm, ikm_len, prk, NULL) != NULL; -} - -/* - * Refer to "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)" - * Section 2.3 (https://tools.ietf.org/html/rfc5869#section-2.3). - * - * 2.3. Step 2: Expand - * - * HKDF-Expand(PRK, info, L) -> OKM - * - * Options: - * Hash a hash function; HashLen denotes the length of the - * hash function output in octets - * - * Inputs: - * PRK a pseudorandom key of at least HashLen octets - * (usually, the output from the extract step) - * info optional context and application specific information - * (can be a zero-length string) - * L length of output keying material in octets - * (<= 255*HashLen) - * - * Output: - * OKM output keying material (of L octets) - * - * The output OKM is calculated as follows: - * - * N = ceil(L/HashLen) - * T = T(1) | T(2) | T(3) | ... | T(N) - * OKM = first L octets of T - * - * where: - * T(0) = empty string (zero length) - * T(1) = HMAC-Hash(PRK, T(0) | info | 0x01) - * T(2) = HMAC-Hash(PRK, T(1) | info | 0x02) - * T(3) = HMAC-Hash(PRK, T(2) | info | 0x03) - * ... - * - * (where the constant concatenated to the end of each T(n) is a - * single octet.) - */ -static int HKDF_Expand(const EVP_MD *evp_md, - const unsigned char *prk, size_t prk_len, - const unsigned char *info, size_t info_len, - unsigned char *okm, size_t okm_len) -{ - HMAC_CTX *hmac; - int ret = 0, sz; - unsigned int i; - unsigned char prev[EVP_MAX_MD_SIZE]; - size_t done_len = 0, dig_len, n; - - sz = EVP_MD_size(evp_md); - if (sz <= 0) - return 0; - dig_len = (size_t)sz; - - /* calc: N = ceil(L/HashLen) */ - n = okm_len / dig_len; - if (okm_len % dig_len) - n++; - - if (n > 255 || okm == NULL) - return 0; - - if ((hmac = HMAC_CTX_new()) == NULL) - return 0; - - if (!HMAC_Init_ex(hmac, prk, prk_len, evp_md, NULL)) - goto err; - - for (i = 1; i <= n; i++) { - size_t copy_len; - const unsigned char ctr = i; - - /* calc: T(i) = HMAC-Hash(PRK, T(i - 1) | info | i) */ - if (i > 1) { - if (!HMAC_Init_ex(hmac, NULL, 0, NULL, NULL)) - goto err; - - if (!HMAC_Update(hmac, prev, dig_len)) - goto err; - } - - if (!HMAC_Update(hmac, info, info_len)) - goto err; - - if (!HMAC_Update(hmac, &ctr, 1)) - goto err; - - if (!HMAC_Final(hmac, prev, NULL)) - goto err; - - copy_len = (done_len + dig_len > okm_len) ? - okm_len - done_len : - dig_len; - - memcpy(okm + done_len, prev, copy_len); - - done_len += copy_len; - } - ret = 1; - - err: - OPENSSL_cleanse(prev, sizeof(prev)); - HMAC_CTX_free(hmac); - return ret; -} diff --git a/crypto/kdf/pbkdf2.c b/crypto/kdf/pbkdf2.c deleted file mode 100644 index d41689773c..0000000000 --- a/crypto/kdf/pbkdf2.c +++ /dev/null @@ -1,324 +0,0 @@ -/* - * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved. - * - * Licensed under the Apache License 2.0 (the "License"). You may not use - * this file except in compliance with the License. You can obtain a copy - * in the file LICENSE in the source distribution or at - * https://www.openssl.org/source/license.html - */ - -#include <stdlib.h> -#include <stdarg.h> -#include <string.h> -#include <openssl/hmac.h> -#include <openssl/evp.h> -#include <openssl/kdf.h> -#include "internal/cryptlib.h" -#include "internal/evp_int.h" -#include "kdf_local.h" - -/* Constants specified in SP800-132 */ -#define KDF_PBKDF2_MIN_KEY_LEN_BITS 112 -#define KDF_PBKDF2_MAX_KEY_LEN_DIGEST_RATIO 0xFFFFFFFF -#define KDF_PBKDF2_MIN_ITERATIONS 1000 -#define KDF_PBKDF2_MIN_SALT_LEN (128 / 8) -/* - * For backwards compatibility reasons, - * Extra checks are done by default in fips mode only. - */ -#ifdef FIPS_MODE -# define KDF_PBKDF2_DEFAULT_CHECKS 1 -#else -# define KDF_PBKDF2_DEFAULT_CHECKS 0 -#endif /* FIPS_MODE */ - -static void kdf_pbkdf2_reset(EVP_KDF_IMPL *impl); -static void kdf_pbkdf2_init(EVP_KDF_IMPL *impl); -static int pbkdf2_derive(const char *pass, size_t passlen, - const unsigned char *salt, int saltlen, int iter, - const EVP_MD *digest, unsigned char *key, - size_t keylen, int extra_checks); - -struct evp_kdf_impl_st { - unsigned char *pass; - size_t pass_len; - unsigned char *salt; - size_t salt_len; - int iter; - const EVP_MD *md; - int lower_bound_checks; -}; - -static EVP_KDF_IMPL *kdf_pbkdf2_new(void) -{ - EVP_KDF_IMPL *impl; - - impl = OPENSSL_zalloc(sizeof(*impl)); - if (impl == NULL) { - KDFerr(KDF_F_KDF_PBKDF2_NEW, ERR_R_MALLOC_FAILURE); - return NULL; - } - kdf_pbkdf2_init(impl); - return impl; -} - -static void kdf_pbkdf2_free(EVP_KDF_IMPL *impl) -{ - kdf_pbkdf2_reset(impl); - OPENSSL_free(impl); -} - -static void kdf_pbkdf2_reset(EVP_KDF_IMPL *impl) -{ - OPENSSL_free(impl->salt); - OPENSSL_clear_free(impl->pass, impl->pass_len); - memset(impl, 0, sizeof(*impl)); - kdf_pbkdf2_init(impl); -} - -static void kdf_pbkdf2_init(EVP_KDF_IMPL *impl) -{ - impl->iter = PKCS5_DEFAULT_ITER; - impl->md = EVP_sha1(); - impl->lower_bound_checks = KDF_PBKDF2_DEFAULT_CHECKS; -} - -static int pbkdf2_set_membuf(unsigned char **buffer, size_t *buflen, - const unsigned char *new_buffer, - size_t new_buflen) -{ - if (new_buffer == NULL) - return 1; - - OPENSSL_clear_free(*buffer, *buflen); - - if (new_buflen > 0) { - *buffer = OPENSSL_memdup(new_buffer, new_buflen); - } else { - *buffer = OPENSSL_malloc(1); - } - if (*buffer == NULL) { - KDFerr(KDF_F_PBKDF2_SET_MEMBUF, ERR_R_MALLOC_FAILURE); - return 0; - } - - *buflen = new_buflen; - return 1; -} - -static int kdf_pbkdf2_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args) -{ - int iter, pkcs5, min_iter; - const unsigned char *p; - size_t len; - const EVP_MD *md; - - switch (cmd) { - case EVP_KDF_CTRL_SET_PBKDF2_PKCS5_MODE: - pkcs5 = va_arg(args, int); - impl->lower_bound_checks = (pkcs5 == 0) ? 1 : 0; - return 1; - case EVP_KDF_CTRL_SET_PASS: - p = va_arg(args, const unsigned char *); - len = va_arg(args, size_t); - return pbkdf2_set_membuf(&impl->pass, &impl->pass_len, p, len); - - case EVP_KDF_CTRL_SET_SALT: - p = va_arg(args, const unsigned char *); - len = va_arg(args, size_t); - if (impl->lower_bound_checks != 0 && len < KDF_PBKDF2_MIN_SALT_LEN) { - KDFerr(KDF_F_KDF_PBKDF2_CTRL, KDF_R_INVALID_SALT_LEN); - return 0; - } - return pbkdf2_set_membuf(&impl->salt, &impl->salt_len, p, len); - - case EVP_KDF_CTRL_SET_ITER: - iter = va_arg(args, int); - min_iter = impl->lower_bound_checks != 0 ? KDF_PBKDF2_MIN_ITERATIONS : 1; - if (iter < min_iter) { - KDFerr(KDF_F_KDF_PBKDF2_CTRL, KDF_R_INVALID_ITERATION_COUNT); - return 0; - } - impl->iter = iter; - return 1; - - case EVP_KDF_CTRL_SET_MD: - md = va_arg(args, const EVP_MD *); - if (md == NULL) { - KDFerr(KDF_F_KDF_PBKDF2_CTRL, KDF_R_VALUE_MISSING); - return 0; - } - - impl->md = md; - return 1; - - default: - return -2; - } -} - -static int kdf_pbkdf2_ctrl_str(EVP_KDF_IMPL *impl, const char *type, - const char *value) -{ - if (value == NULL) { - KDFerr(KDF_F_KDF_PBKDF2_CTRL_STR, KDF_R_VALUE_MISSING); - return 0; - } - - if (strcmp(type, "pass") == 0) - return kdf_str2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_PASS, - value); - - if (strcmp(type, "hexpass") == 0) - return kdf_hex2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_PASS, - value); - - if (strcmp(type, "salt") == 0) - return kdf_str2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_SALT, - value); - - if (strcmp(type, "hexsalt") == 0) - return kdf_hex2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_SALT, - value); - - if (strcmp(type, "iter") == 0) - return call_ctrl(kdf_pbkdf2_ctrl, impl, EVP_KDF_CTRL_SET_ITER, - atoi(value)); - - if (strcmp(type, "digest") == 0) - return kdf_md2ctrl(impl, kdf_pbkdf2_ctrl, EVP_KDF_CTRL_SET_MD, value); - - if (strcmp(type, "pkcs5") == 0) - return kdf_str2ctrl(impl, kdf_pbkdf2_ctrl, - EVP_KDF_CTRL_SET_PBKDF2_PKCS5_MODE, value); - return -2; -} - -static int kdf_pbkdf2_derive(EVP_KDF_IMPL *impl, unsigned char *key, - size_t keylen) -{ - if (impl->pass == NULL) { - KDFerr(KDF_F_KDF_PBKDF2_DERIVE, KDF_R_MISSING_PASS); - return 0; - } - - if (impl->salt == NULL) { - KDFerr(KDF_F_KDF_PBKDF2_DERIVE, KDF_R_MISSING_SALT); - return 0; - } - - return pbkdf2_derive((char *)impl->pass, impl->pass_len, - impl->salt, impl->salt_len, impl->iter, - impl->md, key, keylen, impl->lower_bound_checks); -} - -const EVP_KDF pbkdf2_kdf_meth = { - EVP_KDF_PBKDF2, - kdf_pbkdf2_new, - kdf_pbkdf2_free, - kdf_pbkdf2_reset, - kdf_pbkdf2_ctrl, - kdf_pbkdf2_ctrl_str, - NULL, - kdf_pbkdf2_derive -}; - -/* - * This is an implementation of PKCS#5 v2.0 password based encryption key - * derivation function PBKDF2. SHA1 version verified against test vectors - * posted by Peter Gutmann to the PKCS-TNG mailing list. - * - * The constraints specified by SP800-132 have been added i.e. - * - Check the range of the key length. - * - Minimum iteration count of 1000. - * - Randomly-generated portion of the salt shall be at least 128 bits. - */ -static int pbkdf2_derive(const char *pass, size_t passlen, - const unsigned char *salt, int saltlen, int iter, - const EVP_MD *digest, unsigned char *key, - size_t keylen, int lower_bound_checks) -{ - int ret = 0; - unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4]; - int cplen, j, k, tkeylen, mdlen; - unsigned long i = 1; - HMAC_CTX *hctx_tpl = NULL, *hctx = NULL; - - mdlen = EVP_MD_size(digest); - if (mdlen <= 0) - return 0; - - /* - * This check should always be done because keylen / mdlen >= (2^32 - 1) - * results in an overflow of the loop counter 'i'. - */ - if ((keylen / mdlen) >= KDF_PBKDF2_MAX_KEY_LEN_DIGEST_RATIO) { - KDFerr(KDF_F_PBKDF2_DERIVE, KDF_R_INVALID_KEY_LEN); - return 0; - } - - if (lower_bound_checks) { - if ((keylen * 8) < KDF_PBKDF2_MIN_KEY_LEN_BITS) { - KDFerr(KDF_F_PBKDF2_DERIVE, KDF_R_INVALID_KEY_LEN); - return 0; - } - if (saltlen < KDF_PBKDF2_MIN_SALT_LEN) { - KDFerr(KDF_F_PBKDF2_DERIVE, KDF_R_INVALID_SALT_LEN); - return 0; - } - if (iter < KDF_PBKDF2_MIN_ITERATIONS) { - KDFerr(KDF_F_PBKDF2_DERIVE, KDF_R_INVALID_ITERATION_COUNT); - return 0; - } - } - - hctx_tpl = HMAC_CTX_new(); - if (hctx_tpl == NULL) - return 0; - p = key; - tkeylen = keylen; - if (!HMAC_Init_ex(hctx_tpl, pass, passlen, digest, NULL)) - goto err; - hctx = HMAC_CTX_new(); - if (hctx == NULL) - goto err; - while (tkeylen) { - if (tkeylen > mdlen) - cplen = mdlen; - else - cplen = tkeylen; - /* - * We are unlikely to ever use more than 256 blocks (5120 bits!) but - * just in case... - */ - itmp[0] = (unsigned char)((i >> 24) & 0xff); - itmp[1] = (unsigned char)((i >> 16) & 0xff); - itmp[2] = (unsigned char)((i >> 8) & 0xff); - itmp[3] = (unsigned char)(i & 0xff); - if (!HMAC_CTX_copy(hctx, hctx_tpl)) - goto err; - if (!HMAC_Update(hctx, salt, saltlen) - || !HMAC_Update(hctx, itmp, 4) - || !HMAC_Final(hctx, digtmp, NULL)) - goto err; - memcpy(p, digtmp, cplen); - for (j = 1; j < iter; j++) { - if (!HMAC_CTX_copy(hctx, hctx_tpl)) - goto err; - if (!HMAC_Update(hctx, digtmp, mdlen) - || !HMAC_Final(hctx, digtmp, NULL)) - goto err; - for (k = 0; k < cplen; k++) - p[k] ^= digtmp[k]; - } - tkeylen -= cplen; - i++; - p += cplen; - } - ret = 1; - -err: - HMAC_CTX_free(hctx); - HMAC_CTX_free(hctx_tpl); - return ret; -} diff --git a/crypto/kdf/scrypt.c b/crypto/kdf/scrypt.c deleted file mode 100644 index 29ceeb3ad9..0000000000 --- a/crypto/kdf/scrypt.c +++ /dev/null @@ -1,506 +0,0 @@ -/* - * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. - * - * Licensed under the Apache License 2.0 (the "License"). You may not use - * this file except in compliance with the License. You can obtain a copy - * in the file LICENSE in the source distribution or at - * https://www.openssl.org/source/license.html - */ - -#include <stdlib.h> -#include <stdarg.h> -#include <string.h> -#include <openssl/evp.h> -#include <openssl/kdf.h> -#include <openssl/err.h> -#include "internal/evp_int.h" -#include "internal/numbers.h" -#include "kdf_local.h" - -#ifndef OPENSSL_NO_SCRYPT - -static void kdf_scrypt_reset(EVP_KDF_IMPL *impl); -static void kdf_scrypt_init(EVP_KDF_IMPL *impl); -static int atou64(const char *nptr, uint64_t *result); -static int scrypt_alg(const char *pass, size_t passlen, - const unsigned char *salt, size_t saltlen, - uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, - unsigned char *key, size_t keylen); - -struct evp_kdf_impl_st { - unsigned char *pass; - size_t pass_len; - unsigned char *salt; - size_t salt_len; - uint64_t N; - uint32_t r, p; - uint64_t maxmem_bytes; -}; - -/* Custom uint64_t parser since we do not have strtoull */ -static int atou64(const char *nptr, uint64_t *result) -{ - uint64_t value = 0; - - while (*nptr) { - unsigned int digit; - uint64_t new_value; - - if ((*nptr < '0') || (*nptr > '9')) { - return 0; - } - digit = (unsigned int)(*nptr - '0'); - new_value = (value * 10) + digit; - if ((new_value < digit) || ((new_value - digit) / 10 != value)) { - /* Overflow */ - return 0; - } - value = new_value; - nptr++; - } - *result = value; - return 1; -} - -static EVP_KDF_IMPL *kdf_scrypt_new(void) -{ - EVP_KDF_IMPL *impl; - - impl = OPENSSL_zalloc(sizeof(*impl)); - if (impl == NULL) { - KDFerr(KDF_F_KDF_SCRYPT_NEW, ERR_R_MALLOC_FAILURE); - return NULL; - } - kdf_scrypt_init(impl); - return impl; -} - -static void kdf_scrypt_free(EVP_KDF_IMPL *impl) -{ - kdf_scrypt_reset(impl); - OPENSSL_free(impl); -} - -static void kdf_scrypt_reset(EVP_KDF_IMPL *impl) -{ - OPENSSL_free(impl->salt); - OPENSSL_clear_free(impl->pass, impl->pass_len); - memset(impl, 0, sizeof(*impl)); - kdf_scrypt_init(impl); -} - -static void kdf_scrypt_init(EVP_KDF_IMPL *impl) -{ - /* Default values are the most conservative recommendation given in the - * original paper of C. Percival. Derivation uses roughly 1 GiB of memory - * for this parameter choice (approx. 128 * r * N * p bytes). - */ - impl->N = 1 << 20; - impl->r = 8; - impl->p = 1; - impl->maxmem_bytes = 1025 * 1024 * 1024; -} - -static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen, - const unsigned char *new_buffer, - size_t new_buflen) -{ - if (new_buffer == NULL) - return 1; - - OPENSSL_clear_free(*buffer, *buflen); - - if (new_buflen > 0) { - *buffer = OPENSSL_memdup(new_buffer, new_buflen); - } else { - *buffer = OPENSSL_malloc(1); - } - if (*buffer == NULL) { - KDFerr(KDF_F_SCRYPT_SET_MEMBUF, ERR_R_MALLOC_FAILURE); - return 0; - } - - *buflen = new_buflen; - return 1; -} - -static int is_power_of_two(uint64_t value) -{ - return (value != 0) && ((value & (value - 1)) == 0); -} - -static int kdf_scrypt_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args) -{ - uint64_t u64_value; - uint32_t value; - const unsigned char *p; - size_t len; - - switch (cmd) { - case EVP_KDF_CTRL_SET_PASS: - p = va_arg(args, const unsigned char *); - len = va_arg(args, size_t); - return scrypt_set_membuf(&impl->pass, &impl->pass_len, p, len); - - case EVP_KDF_CTRL_SET_SALT: - p = va_arg(args, const unsigned char *); - len = va_arg(args, size_t); - return scrypt_set_membuf(&impl->salt, &impl->salt_len, p, len); - - case EVP_KDF_CTRL_SET_SCRYPT_N: - u64_value = va_arg(args, uint64_t); - if ((u64_value <= 1) || !is_power_of_two(u64_value)) - return 0; - - impl->N = u64_value; - return 1; - - case EVP_KDF_CTRL_SET_SCRYPT_R: - value = va_arg(args, uint32_t); - if (value < 1) - return 0; - - impl->r = value; - return 1; - - case EVP_KDF_CTRL_SET_SCRYPT_P: - value = va_arg(args, uint32_t); - if (value < 1) - return 0; - - impl->p = value; - return 1; - - case EVP_KDF_CTRL_SET_MAXMEM_BYTES: - u64_value = va_arg(args, uint64_t); - if (u64_value < 1) - return 0; - - impl->maxmem_bytes = u64_value; - return 1; - - default: - return -2; - } -} - -static int kdf_scrypt_ctrl_uint32(EVP_KDF_IMPL *impl, int cmd, - const char *value) -{ - int int_value = atoi(value); - - if (int_value < 0 || (uint64_t)int_value > UINT32_MAX) { - KDFerr(KDF_F_KDF_SCRYPT_CTRL_UINT32, KDF_R_VALUE_ERROR); - return 0; - } - return call_ctrl(kdf_scrypt_ctrl, impl, cmd, (uint32_t)int_value); -} - -static int kdf_scrypt_ctrl_uint64(EVP_KDF_IMPL *impl, int cmd, - const char *value) -{ - uint64_t u64_value; - - if (!atou64(value, &u64_value)) { - KDFerr(KDF_F_KDF_SCRYPT_CTRL_UINT64, KDF_R_VALUE_ERROR); - return 0; - } - return call_ctrl(kdf_scrypt_ctrl, impl, cmd, u64_value); -} - -static int kdf_scrypt_ctrl_str(EVP_KDF_IMPL *impl, const char *type, - const char *value) -{ - if (value == NULL) { - KDFerr(KDF_F_KDF_SCRYPT_CTRL_STR, KDF_R_VALUE_MISSING); - return 0; - } - - if (strcmp(type, "pass") == 0) - return kdf_str2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_PASS, - value); - - if (strcmp(type, "hexpass") == 0) - return kdf_hex2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_PASS, - value); - - if (strcmp(type, "salt") == 0) - return kdf_str2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_SALT, - value); - - if (strcmp(type, "hexsalt") == 0) - return kdf_hex2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_SALT, - value); - - if (strcmp(type, "N") == 0) - return kdf_scrypt_ctrl_uint64(impl, EVP_KDF_CTRL_SET_SCRYPT_N, value); - - if (strcmp(type, "r") == 0) - return kdf_scrypt_ctrl_uint32(impl, EVP_KDF_CTRL_SET_SCRYPT_R, value); - - if (strcmp(type, "p") == 0) - return kdf_scrypt_ctrl_uint32(impl, EVP_KDF_CTRL_SET_SCRYPT_P, value); - - if (strcmp(type, "maxmem_bytes") == 0) - return kdf_scrypt_ctrl_uint64(impl, EVP_KDF_CTRL_SET_MAXMEM_BYTES, - value); - - return -2; -} - -static int kdf_scrypt_derive(EVP_KDF_IMPL *impl, unsigned char *key, - size_t keylen) -{ - if (impl->pass == NULL) { - KDFerr(KDF_F_KDF_SCRYPT_DERIVE, KDF_R_MISSING_PASS); - return 0; - } - - if (impl->salt == NULL) { - KDFerr(KDF_F_KDF_SCRYPT_DERIVE, KDF_R_MISSING_SALT); - return 0; - } - - return scrypt_alg((char *)impl->pass, impl->pass_len, impl->salt, - impl->salt_len, impl->N, impl->r, impl->p, - impl->maxmem_bytes, key, keylen); -} - -const EVP_KDF scrypt_kdf_meth = { - EVP_KDF_SCRYPT, - kdf_scrypt_new, - kdf_scrypt_free, - kdf_scrypt_reset, - kdf_scrypt_ctrl, - kdf_scrypt_ctrl_str, - NULL, - kdf_scrypt_derive -}; - -#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) -static void salsa208_word_specification(uint32_t inout[16]) -{ - int i; - uint32_t x[16]; - - memcpy(x, inout, sizeof(x)); - for (i = 8; i > 0; i -= 2) { - x[4] ^= R(x[0] + x[12], 7); - x[8] ^= R(x[4] + x[0], 9); - x[12] ^= R(x[8] + x[4], 13); - x[0] ^= R(x[12] + x[8], 18); - x[9] ^= R(x[5] + x[1], 7); - x[13] ^= R(x[9] + x[5], 9); - x[1] ^= R(x[13] + x[9], 13); - x[5] ^= R(x[1] + x[13], 18); - x[14] ^= R(x[10] + x[6], 7); - x[2] ^= R(x[14] + x[10], 9); - x[6] ^= R(x[2] + x[14], 13); - x[10] ^= R(x[6] + x[2], 18); - x[3] ^= R(x[15] + x[11], 7); - x[7] ^= R(x[3] + x[15], 9); - x[11] ^= R(x[7] + x[3], 13); - x[15] ^= R(x[11] + x[7], 18); - x[1] ^= R(x[0] + x[3], 7); - x[2] ^= R(x[1] + x[0], 9); - x[3] ^= R(x[2] + x[1], 13); - x[0] ^= R(x[3] + x[2], 18); - x[6] ^= R(x[5] + x[4], 7); - x[7] ^= R(x[6] + x[5], 9); - x[4] ^= R(x[7] + x[6], 13); - x[5] ^= R(x[4] + x[7], 18); - x[11] ^= R(x[10] + x[9], 7); - x[8] ^= R(x[11] + x[10], 9); - x[9] ^= R(x[8] + x[11], 13); - x[10] ^= R(x[9] + x[8], 18); - x[12] ^= R(x[15] + x[14], 7); - x[13] ^= R(x[12] + x[15], 9); - x[14] ^= R(x[13] + x[12], 13); - x[15] ^= R(x[14] + x[13], 18); - } - for (i = 0; i < 16; ++i) - inout[i] += x[i]; - OPENSSL_cleanse(x, sizeof(x)); -} - -static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) -{ - uint64_t i, j; - uint32_t X[16], *pB; - - memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); - pB = B; - for (i = 0; i < r * 2; i++) { - for (j = 0; j < 16; j++) - X[j] ^= *pB++; - salsa208_word_specification(X); - memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); - } - OPENSSL_cleanse(X, sizeof(X)); -} - -static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, - uint32_t *X, uint32_t *T, uint32_t *V) -{ - unsigned char *pB; - uint32_t *pV; - uint64_t i, k; - - /* Convert from little endian input */ - for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { - *pV = *pB++; - *pV |= *pB++ << 8; - *pV |= *pB++ << 16; - *pV |= (uint32_t)*pB++ << 24; - } - - for (i = 1; i < N; i++, pV += 32 * r) - scryptBlockMix(pV, pV - 32 * r, r); - - scryptBlockMix(X, V + (N - 1) * 32 * r, r); - - for (i = 0; i < N; i++) { - uint32_t j; - j = X[16 * (2 * r - 1)] % N; - pV = V + 32 * r * j; - for (k = 0; k < 32 * r; k++) - T[k] = X[k] ^ *pV++; - scryptBlockMix(X, T, r); - } - /* Convert output to little endian */ - for (i = 0, pB = B; i < 32 * r; i++) { - uint32_t xtmp = X[i]; - *pB++ = xtmp & 0xff; - *pB++ = (xtmp >> 8) & 0xff; - *pB++ = (xtmp >> 16) & 0xff; - *pB++ = (xtmp >> 24) & 0xff; - } -} - -#ifndef SIZE_MAX -# define SIZE_MAX ((size_t)-1) -#endif - -/* - * Maximum power of two that will fit in uint64_t: this should work on - * most (all?) platforms. - */ - -#define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1) - -/* - * Maximum value of p * r: - * p <= ((2^32-1) * hLen) / MFLen => - * p <= ((2^32-1) * 32) / (128 * r) => - * p * r <= (2^30-1) - */ - -#define SCRYPT_PR_MAX ((1 << 30) - 1) - -static int scrypt_alg(const char *pass, size_t passlen, - const unsigned char *salt, size_t saltlen, - uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, - unsigned char *key, size_t keylen) -{ - int rv = 0; - unsigned char *B; - uint32_t *X, *V, *T; - uint64_t i, Blen, Vlen; - - /* Sanity check parameters */ - /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ - if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) - return 0; - /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ - if (p > SCRYPT_PR_MAX / r) { - EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); - return 0; - } - - /* - * Need to check N: if 2^(128 * r / 8) overflows limit this is - * automatically satisfied since N <= UINT64_MAX. - */ - - if (16 * r <= LOG2_UINT64_MAX) { - if (N >= (((uint64_t)1) << (16 * r))) { - EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); - return 0; - } - } - - /* Memory checks: check total allocated buffer size fits in uint64_t */ - - /* - * B size in section 5 step 1.S - * Note: we know p * 128 * r < UINT64_MAX because we already checked - * p * r < SCRYPT_PR_MAX - */ - Blen = p * 128 * r; - /* - * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would - * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.] - */ - if (Blen > INT_MAX) { - EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); - return 0; - } - - /* - * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t - * This is combined size V, X and T (section 4) - */ - i = UINT64_MAX / (32 * sizeof(uint32_t)); - if (N + 2 > i / r) { - EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); - return 0; - } - Vlen = 32 * r * (N + 2) * sizeof(uint32_t); - - /* check total allocated size fits in uint64_t */ - if (Blen > UINT64_MAX - Vlen) { - EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); - return 0; - } - - /* Check that the maximum memory doesn't exceed a size_t limits */ - if (maxmem > SIZE_MAX) - maxmem = SIZE_MAX; - - if (Blen + Vlen > maxmem) { - EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); - return 0; - } - - /* If no key return to indicate parameters are OK */ - if (key == NULL) - return 1; - - B = OPENSSL_malloc((size_t)(Blen + Vlen)); - if (B == NULL) { - EVPerr(EVP_F_SCRYPT_ALG, ERR_R_MALLOC_FAILURE); - return 0; - } - X = (uint32_t *)(B + Blen); - T = X + 32 * r; - V = T + 32 * r; - if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(), - (int)Blen, B) == 0) - goto err; - - for (i = 0; i < p; i++) - scryptROMix(B + 128 * r * i, r, N, X, T, V); - - if (PKCS5_PBKDF2_HMAC(pass, passlen, B, (int)Blen, 1, EVP_sha256(), - keylen, key) == 0) - goto err; - rv = 1; - err: - if (rv == 0) - EVPerr(EVP_F_SCRYPT_ALG, EVP_R_PBKDF2_ERROR); - - OPENSSL_clear_free(B, (size_t)(Blen + Vlen)); - return rv; -} - -#endif diff --git a/crypto/kdf/sshkdf.c b/crypto/kdf/sshkdf.c deleted file mode 100644 index 4701c9cad1..0000000000 --- a/crypto/kdf/sshkdf.c +++ /dev/null @@ -1,292 +0,0 @@ -/* - * Copyright 2018-2018 The OpenSSL Project Authors. All Rights Reserved. - * - * Licensed under the OpenSSL license (the "License"). You may not use - * this file except in compliance with the License. You can obtain a copy - * in the file LICENSE in the source distribution or at - * https://www.openssl.org/source/license.html - */ - -#include <stdlib.h> -#include <stdarg.h> -#include <string.h> -#include <openssl/evp.h> -#include <openssl/kdf.h> -#include "internal/cryptlib.h" -#include "internal/numbers.h" -#include "internal/evp_int.h" -#include "kdf_local.h" - -/* See RFC 4253, Section 7.2 */ - -static void kdf_sshkdf_reset(EVP_KDF_IMPL *impl); -static int SSHKDF(const EVP_MD *evp_md, - const unsigned char *key, size_t key_len, - const unsigned char *xcghash, size_t xcghash_len, - const unsigned char *session_id, size_t session_id_len, - char type, unsigned char *okey, size_t okey_len); - -struct evp_kdf_impl_st { - const EVP_MD *md; - unsigned char *key; /* K */ - size_t key_len; - unsigned char *xcghash; /* H */ - size_t xcghash_len; - char type; /* X */ - unsigned char *session_id; - size_t session_id_len; -}; - -static EVP_KDF_IMPL *kdf_sshkdf_new(void) -{ - EVP_KDF_IMPL *impl; - - if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL) - KDFerr(KDF_F_KDF_SSHKDF_NEW, ERR_R_MALLOC_FAILURE); - return impl; -} - -static void kdf_sshkdf_free(EVP_KDF_IMPL *impl) -{ - kdf_sshkdf_reset(impl); - OPENSSL_free(impl); -} - -static void kdf_sshkdf_reset(EVP_KDF_IMPL *impl) -{ - OPENSSL_clear_free(impl->key, impl->key_len); - OPENSSL_clear_free(impl->xcghash, impl->xcghash_len); - OPENSSL_clear_free(impl->session_id, impl->session_id_len); - memset(impl, 0, sizeof(*impl)); -} - -static int kdf_sshkdf_parse_buffer_arg(unsigned char **dst, size_t *dst_len, - va_list args) -{ - const unsigned char *p; - size_t len; - - p = va_arg(args, const unsigned char *); - len = va_arg(args, size_t); - OPENSSL_clear_free(*dst, *dst_len); - *dst = OPENSSL_memdup(p, len); - if (*dst == NULL) - return 0; - - *dst_len = len; - return 1; -} - -static int kdf_sshkdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args) -{ - int t; - - switch (cmd) { - case EVP_KDF_CTRL_SET_MD: - impl->md = va_arg(args, const EVP_MD *); - if (impl->md == NULL) - return 0; - - return 1; - - case EVP_KDF_CTRL_SET_KEY: - return kdf_sshkdf_parse_buffer_arg(&impl->key, - &impl->key_len, args); - - case EVP_KDF_CTRL_SET_SSHKDF_XCGHASH: - return kdf_sshkdf_parse_buffer_arg(&impl->xcghash, - &impl->xcghash_len, args); - - case EVP_KDF_CTRL_SET_SSHKDF_SESSION_ID: - return kdf_sshkdf_parse_buffer_arg(&impl->session_id, - &impl->session_id_len, args); - - case EVP_KDF_CTRL_SET_SSHKDF_TYPE: - t = va_arg(args, int); - if (t < 65 || t > 70) { - KDFerr(KDF_F_KDF_SSHKDF_CTRL, KDF_R_VALUE_ERROR); - return 0; - } - - impl->type = (char)t; - return 1; - - default: - return -2; - - } -} - -static int kdf_sshkdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type, - const char *value) -{ - if (value == NULL) { - KDFerr(KDF_F_KDF_SSHKDF_CTRL_STR, KDF_R_VALUE_MISSING); - return 0; - } - - if (strcmp(type, "digest") == 0) - return kdf_md2ctrl(impl, kdf_sshkdf_ctrl, EVP_KDF_CTRL_SET_MD, value); - /* alias, for historical reasons */ - if (strcmp(type, "md") == 0) - return kdf_md2ctrl(impl, kdf_sshkdf_ctrl, EVP_KDF_CTRL_SET_MD, value); - - if (strcmp(type, "key") == 0) - return kdf_str2ctrl(impl, kdf_sshkdf_ctrl, - EVP_KDF_CTRL_SET_KEY, value); - - if (strcmp(type, "hexkey") == 0) - return kdf_hex2ctrl(impl, kdf_sshkdf_ctrl, - EVP_KDF_CTRL_SET_KEY, value); - - if (strcmp(type, "xcghash") == 0) - return kdf_str2ctrl(impl, kdf_sshkdf_ctrl, - EVP_KDF_CTRL_SET_SSHKDF_XCGHASH, value); - - if (strcmp(type, "hexxcghash") == 0) - return kdf_hex2ctrl(impl, kdf_sshkdf_ctrl, - EVP_KDF_CTRL_SET_SSHKDF_XCGHASH, value); - - if (strcmp(type, "session_id") == 0) - return kdf_str2ctrl(impl, kdf_sshkdf_ctrl, - EVP_KDF_CTRL_SET_SSHKDF_SESSION_ID, value); - - if (strcmp(type, "hexsession_id") == 0) - return kdf_hex2ctrl(impl, kdf_sshkdf_ctrl, - EVP_KDF_CTRL_SET_SSHKDF_SESSION_ID, value); - - if (strcmp(type, "type") == 0) { - if (strlen(value) != 1) { - KDFerr(KDF_F_KDF_SSHKDF_CTRL_STR, KDF_R_VALUE_ERROR); - return 0; - } - - return call_ctrl(kdf_sshkdf_ctrl, impl, EVP_KDF_CTRL_SET_SSHKDF_TYPE, - (int)value[0]); - } - - KDFerr(KDF_F_KDF_SSHKDF_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE); - return -2; -} - -static size_t kdf_sshkdf_size(EVP_KDF_IMPL *impl) -{ - return SIZE_MAX; -} - -static int kdf_sshkdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, - size_t keylen) -{ - if (impl->md == NULL) { - KDFerr(KDF_F_KDF_SSHKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST); - return 0; - } - if (impl->key == NULL) { - KDFerr(KDF_F_KDF_SSHKDF_DERIVE, KDF_R_MISSING_KEY); - return 0; - } - if (impl->xcghash == NULL) { - KDFerr(KDF_F_KDF_SSHKDF_DERIVE, KDF_R_MISSING_XCGHASH); - return 0; - } - if (impl->session_id == NULL) { - KDFerr(KDF_F_KDF_SSHKDF_DERIVE, KDF_R_MISSING_SESSION_ID); - return 0; - } - if (impl->type == 0) { - KDFerr(KDF_F_KDF_SSHKDF_DERIVE, KDF_R_MISSING_TYPE); - return 0; - } - return SSHKDF(impl->md, impl->key, impl->key_len, - impl->xcghash, impl->xcghash_len, - impl->session_id, impl->session_id_len, - impl->type, key, keylen); -} - -const EVP_KDF sshkdf_kdf_meth = { - EVP_KDF_SSHKDF, - kdf_sshkdf_new, - kdf_sshkdf_free, - kdf_sshkdf_reset, - kdf_sshkdf_ctrl, - kdf_sshkdf_ctrl_str, - kdf_sshkdf_size, - kdf_sshkdf_derive, -}; - -static int SSHKDF(const EVP_MD *evp_md, - const unsigned char *key, size_t key_len, - const unsigned char *xcghash, size_t xcghash_len, - const unsigned char *session_id, size_t session_id_len, - char type, unsigned char *okey, size_t okey_len) -{ - EVP_MD_CTX *md = NULL; - unsigned char digest[EVP_MAX_MD_SIZE]; - unsigned int dsize = 0; - size_t cursize = 0; - int ret = 0; - - md = EVP_MD_CTX_new(); - if (md == NULL) - return 0; - - if (!EVP_DigestInit_ex(md, evp_md, NULL)) - goto out; - - if (!EVP_DigestUpdate(md, key, key_len)) - goto out; - - if (!EVP_DigestUpdate(md, xcghash, xcghash_len)) - goto out; - - if (!EVP_DigestUpdate(md, &type, 1)) - goto out; - - if (!EVP_DigestUpdate(md, session_id, session_id_len)) - goto out; - - if (!EVP_DigestFinal_ex(md, digest, &dsize)) - goto out; - - if (okey_len < dsize) { - memcpy(okey, digest, okey_len); - ret = 1; - goto out; - } - - memcpy(okey, digest, dsize); - - for (cursize = dsize; cursize < okey_len; cursize += dsize) { - - if (!EVP_DigestInit_ex(md, evp_md, NULL)) - goto out; - - if (!EVP_DigestUpdate(md, key, key_len)) - goto out; - - if (!EVP_DigestUpdate(md, xcghash, xcghash_len)) - goto out; - - if (!EVP_DigestUpdate(md, okey, cursize)) - goto out; - - if (!EVP_DigestFinal_ex(md, digest, &dsize)) - goto out; - - if (okey_len < cursize + dsize) { - memcpy(okey + cursize, digest, okey_len - cursize); - ret = 1; - goto out; - } - - memcpy(okey + cursize, digest, dsize); - } - - ret = 1; - -out: - EVP_MD_CTX_free(md); - OPENSSL_cleanse(digest, EVP_MAX_MD_SIZE); - return ret; -} - diff --git a/crypto/kdf/sskdf.c b/crypto/kdf/sskdf.c deleted file mode 100644 index b20eff2865..0000000000 --- a/crypto/kdf/sskdf.c +++ /dev/null @@ -1,558 +0,0 @@ -/* - * Copyright 2019 The OpenSSL Project Authors. All Rights Reserved. - * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved. - * - * Licensed under the Apache License 2.0 (the "License"). You may not use - * this file except in compliance with the License. You can obtain a copy - * in the file LICENSE in the source distribution or at - * https://www.openssl.org/source/license.html - */ - -/* - * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final - * Section 4.1. - * - * The Single Step KDF algorithm is given by: - * - * Result(0) = empty bit string (i.e., the null string). - * For i = 1 to reps, do the following: - * Increment counter by 1. - * Result(i) = Result(i - 1) || H(counter || Z || FixedInfo). - * DKM = LeftmostBits(Result(reps), L)) - * - * NOTES: - * Z is a shared secret required to produce the derived key material. - * counter is a 4 byte buffer. - * FixedInfo is a bit string containing context specific data. - * DKM is the output derived key material. - * L is the required size of the DKM. - * reps = [L / H_outputBits] - * H(x) is the auxiliary function that can be either a hash, HMAC or KMAC. - * H_outputBits is the length of the output of the auxiliary function H(x). - * - * Currently there is not a comprehensive list of test vectors for this - * algorithm, especially for H(x) = HMAC and H(x) = KMAC. - * Test vectors for H(x) = Hash are indirectly used by CAVS KAS tests. - */ -#include <stdlib.h> -#include <stdarg.h> -#include <string.h> -#include <openssl/hmac.h> -#include <openssl/evp.h> -#include <openssl/kdf.h> -#include <openssl/core_names.h> -#include <openssl/params.h> -#include "internal/cryptlib.h" -#include "internal/evp_int.h" -#include "kdf_local.h" - -struct evp_kdf_impl_st { - EVP_MAC *mac; /* H(x) = HMAC_hash OR H(x) = KMAC */ - const EVP_MD *md; /* H(x) = hash OR when H(x) = HMAC_hash */ - unsigned char *secret; - size_t secret_len; - unsigned char *info; - size_t info_len; - unsigned char *salt; - size_t salt_len; - size_t out_len; /* optional KMAC parameter */ -}; - -#define SSKDF_MAX_INLEN (1<<30) -#define SSKDF_KMAC128_DEFAULT_SALT_SIZE (168 - 4) -#define SSKDF_KMAC256_DEFAULT_SALT_SIZE (136 - 4) - -/* KMAC uses a Customisation string of 'KDF' */ -static const unsigned char kmac_custom_str[] = { 0x4B, 0x44, 0x46 }; - -/* - * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final - * Section 4. One-Step Key Derivation using H(x) = hash(x) - * Note: X9.63 also uses this code with the only difference being that the - * counter is appended to the secret 'z'. - * i.e. - * result[i] = Hash(counter || z || info) for One Step OR - * result[i] = Hash(z || counter || info) for X9.63. - */ -static int SSKDF_hash_kdm(const EVP_MD *kdf_md, - const unsigned char *z, size_t z_len, - const unsigned char *info, size_t info_len, - unsigned int append_ctr, - unsigned char *derived_key, size_t derived_key_len) -{ - int ret = 0, hlen; - size_t counter, out_len, len = derived_key_len; - unsigned char c[4]; - unsigned char mac[EVP_MAX_MD_SIZE]; - unsigned char *out = derived_key; - EVP_MD_CTX *ctx = NULL, *ctx_init = NULL; - - if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN - || derived_key_len > SSKDF_MAX_INLEN - || derived_key_len == 0) - return 0; - - hlen = EVP_MD_size(kdf_md); - if (hlen <= 0) - return 0; - out_len = (size_t)hlen; - - ctx = EVP_MD_CTX_create(); - ctx_init = EVP_MD_CTX_create(); - if (ctx == NULL || ctx_init == NULL) - goto end; - - if (!EVP_DigestInit(ctx_init, kdf_md)) - goto end; - - for (counter = 1;; counter++) { - c[0] = (unsigned char)((counter >> 24) & 0xff); - c[1] = (unsigned char)((counter >> 16) & 0xff); - c[2] = (unsigned char)((counter >> 8) & 0xff); - c[3] = (unsigned char)(counter & 0xff); - - if (!(EVP_MD_CTX_copy_ex(ctx, ctx_init) - && (append_ctr || EVP_DigestUpdate(ctx, c, sizeof(c))) - && EVP_DigestUpdate(ctx, z, z_len) - && (!append_ctr || EVP_DigestUpdate(ctx, c, sizeof(c))) - && EVP_DigestUpdate(ctx, info, info_len))) - goto end; - if (len >= out_len) { - if (!EVP_DigestFinal_ex(ctx, out, NULL)) - goto end; - out += out_len; - len -= out_len; - if (len == 0) - break; - } else { - if (!EVP_DigestFinal_ex(ctx, mac, NULL)) - goto end; - memcpy(out, mac, len); - break; - } - } - ret = 1; -end: - EVP_MD_CTX_destroy(ctx); - EVP_MD_CTX_destroy(ctx_init); - OPENSSL_cleanse(mac, sizeof(mac)); - return ret; -} - -static int kmac_init(EVP_MAC_CTX *ctx, const unsigned char *custom, - size_t custom_len, size_t kmac_out_len, - size_t derived_key_len, unsigned char **out) -{ - OSSL_PARAM params[2]; - - /* Only KMAC has custom data - so return if not KMAC */ - if (custom == NULL) - return 1; - - params[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_CUSTOM, - (void *)custom, custom_len); - params[1] = OSSL_PARAM_construct_end(); - - if (!EVP_MAC_CTX_set_params(ctx, params)) - return 0; - - /* By default only do one iteration if kmac_out_len is not specified */ - if (kmac_out_len == 0) - kmac_out_len = derived_key_len; - /* otherwise check the size is valid */ - else if (!(kmac_out_len == derived_key_len - || kmac_out_len == 20 - || kmac_out_len == 28 - || kmac_out_len == 32 - || kmac_out_len == 48 - || kmac_out_len == 64)) - return 0; - - params[0] = OSSL_PARAM_construct_size_t(OSSL_MAC_PARAM_SIZE, - &kmac_out_len); - - if (EVP_MAC_CTX_set_params(ctx, params) <= 0) - return 0; - - /* - * For kmac the output buffer can be larger than EVP_MAX_MD_SIZE: so - * alloc a buffer for this case. - */ - if (kmac_out_len > EVP_MAX_MD_SIZE) { - *out = OPENSSL_zalloc(kmac_out_len); - if (*out == NULL) - return 0; - } - return 1; -} - -/* - * Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final - * Section 4. One-Step Key Derivation using MAC: i.e either - * H(x) = HMAC-hash(salt, x) OR - * H(x) = KMAC#(salt, x, outbits, CustomString='KDF') - */ -static int SSKDF_mac_kdm(EVP_MAC *kdf_mac, const EVP_MD *hmac_md, - const unsigned char *kmac_custom, - size_t kmac_custom_len, size_t kmac_out_len, - const unsigned char *salt, size_t salt_len, - const unsigned char *z, size_t z_len, - const unsigned char *info, size_t info_len, - unsigned char *derived_key, size_t derived_key_len) -{ - int ret = 0; - size_t counter, out_len, len; - unsigned char c[4]; - unsigned char mac_buf[EVP_MAX_MD_SIZE]; - unsigned char *out = derived_key; - EVP_MAC_CTX *ctx = NULL, *ctx_init = NULL; - unsigned char *mac = mac_buf, *kmac_buffer = NULL; - OSSL_PARAM params[3]; - size_t params_n = 0; - - if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN - || derived_key_len > SSKDF_MAX_INLEN - || derived_key_len == 0) - return 0; - - ctx_init = EVP_MAC_CTX_new(kdf_mac); - if (ctx_init == NULL) - goto end; - - if (hmac_md != NULL) { - const char *mdname = EVP_MD_name(hmac_md); - params[params_n++] = - OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, - (char *)mdname, 0); - } - params[params_n++] = - OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, (void *)salt, - salt_len); - params[params_n] = OSSL_PARAM_construct_end(); - - if (!EVP_MAC_CTX_set_params(ctx_init, params)) - goto end; - - if (!kmac_init(ctx_init, kmac_custom, kmac_custom_len, kmac_out_len, - derived_key_len, &kmac_buffer)) - goto end; - if (kmac_buffer != NULL) - mac = kmac_buffer; - - if (!EVP_MAC_init(ctx_init)) - goto end; - - out_len = EVP_MAC_size(ctx_init); /* output size */ - if (out_len <= 0) - goto end; - len = derived_key_len; - - for (counter = 1;; counter++) { - c[0] = (unsigned char)((counter >> 24) & 0xff); - c[1] = (unsigned char)((counter >> 16) & 0xff); - c[2] = (unsigned char)((counter >> 8) & 0xff); - c[3] = (unsigned char)(counter & 0xff); - - ctx = EVP_MAC_CTX_dup(ctx_init); - if (!(ctx != NULL - && EVP_MAC_update(ctx, c, sizeof(c)) - && EVP_MAC_update(ctx, z, z_len) - && EVP_MAC_update(ctx, info, info_len))) - goto end; - if (len >= out_len) { - if (!EVP_MAC_final(ctx, out, NULL, len)) - goto end; - out += out_len; - len -= out_len; - if (len == 0) - break; - } else { - if (!EVP_MAC_final(ctx, mac, NULL, len)) - goto end; - memcpy(out, mac, len); - break; - } - EVP_MAC_CTX_free(ctx); - ctx = NULL; - } - ret = 1; -end: - if (kmac_buffer != NULL) - OPENSSL_clear_free(kmac_buffer, kmac_out_len); - else - OPENSSL_cleanse(mac_buf, sizeof(mac_buf)); - - EVP_MAC_CTX_free(ctx); - EVP_MAC_CTX_free(ctx_init); - return ret; -} - -static EVP_KDF_IMPL *sskdf_new(void) -{ - EVP_KDF_IMPL *impl; - - if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL) - KDFerr(KDF_F_SSKDF_NEW, ERR_R_MALLOC_FAILURE); - return impl; -} - -static void sskdf_reset(EVP_KDF_IMPL *impl) -{ - OPENSSL_clear_free(impl->secret, impl->secret_len); - OPENSSL_clear_free(impl->info, impl->info_len); - OPENSSL_clear_free(impl->salt, impl->salt_len); - EVP_MAC_free(impl->mac); -#if 0 /* TODO(3.0) When we switch to fetched MDs */ - EVP_MD_meth_free(impl->md); -#endif - memset(impl, 0, sizeof(*impl)); -} - -static void sskdf_free(EVP_KDF_IMPL *impl) -{ - sskdf_reset(impl); - OPENSSL_free(impl); -} - -static int sskdf_set_buffer(va_list args, unsigned char **out, size_t *out_len) -{ - const unsigned char *p; - size_t len; - - p = va_arg(args, const unsigned char *); - len = va_arg(args, size_t); - if (len == 0 || p == NULL) - return 1; - - OPENSSL_free(*out); - *out = OPENSSL_memdup(p, len); - if (*out == NULL) - return 0; - - *out_len = len; - return 1; -} - -static int sskdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args) -{ - const EVP_MD *md; - - switch (cmd) { - case EVP_KDF_CTRL_SET_KEY: - return sskdf_set_buffer(args, &impl->secret, &impl->secret_len); - - case EVP_KDF_CTRL_SET_SSKDF_INFO: - return sskdf_set_buffer(args, &impl->info, &impl->info_len); - - case EVP_KDF_CTRL_SET_MD: - md = va_arg(args, const EVP_MD *); - if (md == NULL) - return 0; - -#if 0 /* TODO(3.0) When we switch to fetched MDs */ - EVP_MD_meth_free(impl->md); -#endif - impl->md = md; - return 1; - - case EVP_KDF_CTRL_SET_MAC: - { - const char *name; - EVP_MAC *mac; - - name = va_arg(args, const char *); - if (name == NULL) - return 0; - - EVP_MAC_free(impl->mac); - impl->mac = NULL; - - /* - * TODO(3.0) add support for OPENSSL_CTX and properties in KDFs - */ - mac = EVP_MAC_fetch(NULL, name, NULL); - if (mac == NULL) - return 0; - - impl->mac = mac; - return 1; - } - case EVP_KDF_CTRL_SET_SALT: - return sskdf_set_buffer(args, &impl->salt, &impl->salt_len); - - case EVP_KDF_CTRL_SET_MAC_SIZE: - impl->out_len = va_arg(args, size_t); - return 1; - - default: - return -2; - } -} - -static int sskdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type, - const char *value) -{ - if (strcmp(type, "secret") == 0 || strcmp(type, "key") == 0) - return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_KEY, - value); - - if (strcmp(type, "hexsecret") == 0 || strcmp(type, "hexkey") == 0) - return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_KEY, - value); - - if (strcmp(type, "info") == 0) - return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SSKDF_INFO, - value); - - if (strcmp(type, "hexinfo") == 0) - return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SSKDF_INFO, - value); - - if (strcmp(type, "digest") == 0) - return kdf_md2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_MD, value); - - if (strcmp(type, "mac") == 0) - return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_MAC, value); - - if (strcmp(type, "salt") == 0) - return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SALT, value); - - if (strcmp(type, "hexsalt") == 0) - return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SALT, value); - - - if (strcmp(type, "maclen") == 0) { - int val = atoi(value); - if (val < 0) { - KDFerr(KDF_F_SSKDF_CTRL_STR, KDF_R_VALUE_ERROR); - return 0; - } - return call_ctrl(sskdf_ctrl, impl, EVP_KDF_CTRL_SET_MAC_SIZE, - (size_t)val); - } - return -2; -} - -static size_t sskdf_size(EVP_KDF_IMPL *impl) -{ - int len; - - if (impl->md == NULL) { - KDFerr(KDF_F_SSKDF_SIZE, KDF_R_MISSING_MESSAGE_DIGEST); - return 0; - } - len = EVP_MD_size(impl->md); - return (len <= 0) ? 0 : (size_t)len; -} - -static int sskdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen) -{ - if (impl->secret == NULL) { - KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_SECRET); - return 0; - } - - if (impl->mac != NULL) { - /* H(x) = KMAC or H(x) = HMAC */ - int ret; - const unsigned char *custom = NULL; - size_t custom_len = 0; - const char *macname; - int default_salt_len; - - /* - * TODO(3.0) investigate the necessity to have all these controls. - * Why does KMAC require a salt length that's shorter than the MD - * block size? - */ - macname = EVP_MAC_name(impl->mac); - if (strcmp(macname, OSSL_MAC_NAME_HMAC) == 0) { - /* H(x) = HMAC(x, salt, hash) */ - if (impl->md == NULL) { - KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST); - return 0; - } - default_salt_len = EVP_MD_block_size(impl->md); - if (default_salt_len <= 0) - return 0; - } else if (strcmp(macname, OSSL_MAC_NAME_KMAC128) == 0 - || strcmp(macname, OSSL_MAC_NAME_KMAC256) == 0) { - /* H(x) = KMACzzz(x, salt, custom) */ - custom = kmac_custom_str; - custom_len = sizeof(kmac_custom_str); - if (strcmp(macname, OSSL_MAC_NAME_KMAC128) == 0) - default_salt_len = SSKDF_KMAC128_DEFAULT_SALT_SIZE; - else - default_salt_len = SSKDF_KMAC256_DEFAULT_SALT_SIZE; - } else { - KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_UNSUPPORTED_MAC_TYPE); - return 0; - } - /* If no salt is set then use a default_salt of zeros */ - if (impl->salt == NULL || impl->salt_len <= 0) { - impl->salt = OPENSSL_zalloc(default_salt_len); - if (impl->salt == NULL) { - KDFerr(KDF_F_SSKDF_DERIVE, ERR_R_MALLOC_FAILURE); - return 0; - } - impl->salt_len = default_salt_len; - } - ret = SSKDF_mac_kdm(impl->mac, impl->md, - custom, custom_len, impl->out_len, - impl->salt, impl->salt_len, - impl->secret, impl->secret_len, - impl->info, impl->info_len, key, keylen); - return ret; - } else { - /* H(x) = hash */ - if (impl->md == NULL) { - KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST); - return 0; - } - return SSKDF_hash_kdm(impl->md, impl->secret, impl->secret_len, - impl->info, impl->info_len, 0, key, keylen); - } -} - -static int x963kdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen) -{ - if (impl->secret == NULL) { - KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_MISSING_SECRET); - return 0; - } - - if (impl->mac != NULL) { - KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_NOT_SUPPORTED); - return 0; - } else { - /* H(x) = hash */ - if (impl->md == NULL) { - KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST); - return 0; - } - return SSKDF_hash_kdm(impl->md, impl->secret, impl->secret_len, - impl->info, impl->info_len, 1, key, keylen); - } -} - -const EVP_KDF ss_kdf_meth = { - EVP_KDF_SS, - sskdf_new, - sskdf_free, - sskdf_reset, - sskdf_ctrl, - sskdf_ctrl_str, - sskdf_size, - sskdf_derive -}; - -const EVP_KDF x963_kdf_meth = { - EVP_KDF_X963, - sskdf_new, - sskdf_free, - sskdf_reset, - sskdf_ctrl, - sskdf_ctrl_str, - sskdf_size, - x963kdf_derive -}; diff --git a/crypto/kdf/tls1_prf.c b/crypto/kdf/tls1_prf.c deleted file mode 100644 index edd7f05ce0..0000000000 --- a/crypto/kdf/tls1_prf.c +++ /dev/null @@ -1,375 +0,0 @@ -/* - * Copyright 2016-2018 The OpenSSL Project Authors. All Rights Reserved. - * - * Licensed under the Apache License 2.0 (the "License"). You may not use - * this file except in compliance with the License. You can obtain a copy - * in the file LICENSE in the source distribution or at - * https://www.openssl.org/source/license.html - */ - -/* - * Refer to "The TLS Protocol Version 1.0" Section 5 - * (https://tools.ietf.org/html/rfc2246#section-5) and - * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 - * (https://tools.ietf.org/html/rfc5246#section-5). - * - * For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by: - * - * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR - * P_SHA-1(S2, label + seed) - * - * where P_MD5 and P_SHA-1 are defined by P_<hash>, below, and S1 and S2 are - * two halves of the secret (with the possibility of one shared byte, in the - * case where the length of the original secret is odd). S1 is taken from the - * first half of the secret, S2 from the second half. - * - * For TLS v1.2 the TLS PRF algorithm is given by: - * - * PRF(secret, label, seed) = P_<hash>(secret, label + seed) - * - * where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as - * those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect, - * unless defined otherwise by the cipher suite. - * - * P_<hash> is an expansion function that uses a single hash function to expand - * a secret and seed into an arbitrary quantity of output: - * - * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) + - * HMAC_<hash>(secret, A(2) + seed) + - * HMAC_<hash>(secret, A(3) + seed) + ... - * - * where + indicates concatenation. P_<hash> can be iterated as many times as - * is necessary to produce the required quantity of data. - * - * A(i) is defined as: - * A(0) = seed - * A(i) = HMAC_<hash>(secret, A(i-1)) - */ -#include <stdio.h> -#include <stdarg.h> -#include <string.h> -#include "internal/cryptlib.h" -#include <openssl/evp.h> -#include <openssl/kdf.h> -#include <openssl/core_names.h> -#include <openssl/params.h> -#include "internal/evp_int.h" -#include "kdf_local.h" - -static void kdf_tls1_prf_reset(EVP_KDF_IMPL *impl); -static int tls1_prf_alg(const EVP_MD *md, - const unsigned char *sec, size_t slen, - const unsigned char *seed, size_t seed_len, - unsigned char *out, size_t olen); - -#define TLS1_PRF_MAXBUF 1024 - -/* TLS KDF kdf context structure */ - -struct evp_kdf_impl_st { - /* Digest to use for PRF */ - const EVP_MD *md; - /* Secret value to use for PRF */ - unsigned char *sec; - size_t seclen; - /* Buffer of concatenated seed data */ - unsigned char seed[TLS1_PRF_MAXBUF]; - size_t seedlen; -}; - -static EVP_KDF_IMPL *kdf_tls1_prf_new(void) -{ - EVP_KDF_IMPL *impl; - - if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL) - KDFerr(KDF_F_KDF_TLS1_PRF_NEW, ERR_R_MALLOC_FAILURE); - return impl; -} - -static void kdf_tls1_prf_free(EVP_KDF_IMPL *impl) -{ - kdf_tls1_prf_reset(impl); - OPENSSL_free(impl); -} - -static void kdf_tls1_prf_reset(EVP_KDF_IMPL *impl) -{ - OPENSSL_clear_free(impl->sec, impl->seclen); - OPENSSL_cleanse(impl->seed, impl->seedlen); - memset(impl, 0, sizeof(*impl)); -} - -static int kdf_tls1_prf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args) -{ - const unsigned char *p; - size_t len; - const EVP_MD *md; - - switch (cmd) { - case EVP_KDF_CTRL_SET_MD: - md = va_arg(args, const EVP_MD *); - if (md == NULL) - return 0; - - impl->md = md; - return 1; - - case EVP_KDF_CTRL_SET_TLS_SECRET: - p = va_arg(args, const unsigned char *); - len = va_arg(args, size_t); - OPENSSL_clear_free(impl->sec, impl->seclen); - impl->sec = OPENSSL_memdup(p, len); - if (impl->sec == NULL) - return 0; - - impl->seclen = len; - return 1; - - case EVP_KDF_CTRL_RESET_TLS_SEED: - OPENSSL_cleanse(impl->seed, impl->seedlen); - impl->seedlen = 0; - return 1; - - case EVP_KDF_CTRL_ADD_TLS_SEED: - p = va_arg(args, const unsigned char *); - len = va_arg(args, size_t); - if (len == 0 || p == NULL) - return 1; - - if (len > (TLS1_PRF_MAXBUF - impl->seedlen)) - return 0; - - memcpy(impl->seed + impl->seedlen, p, len); - impl->seedlen += len; - return 1; - - default: - return -2; - } -} - -static int kdf_tls1_prf_ctrl_str(EVP_KDF_IMPL *impl, - const char *type, const char *value) -{ - if (value == NULL) { - KDFerr(KDF_F_KDF_TLS1_PRF_CTRL_STR, KDF_R_VALUE_MISSING); - return 0; - } - if (strcmp(type, "digest") == 0) - return kdf_md2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_SET_MD, value); - - if (strcmp(type, "secret") == 0) - return kdf_str2ctrl(impl, kdf_tls1_prf_ctrl, - EVP_KDF_CTRL_SET_TLS_SECRET, value); - - if (strcmp(type, "hexsecret") == 0) - return kdf_hex2ctrl(impl, kdf_tls1_prf_ctrl, - EVP_KDF_CTRL_SET_TLS_SECRET, value); - - if (strcmp(type, "seed") == 0) - return kdf_str2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_ADD_TLS_SEED, - value); - - if (strcmp(type, "hexseed") == 0) - return kdf_hex2ctrl(impl, kdf_tls1_prf_ctrl, EVP_KDF_CTRL_ADD_TLS_SEED, - value); - - return -2; -} - -static int kdf_tls1_prf_derive(EVP_KDF_IMPL *impl, unsigned char *key, - size_t keylen) -{ - if (impl->md == NULL) { - KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST); - return 0; - } - if (impl->sec == NULL) { - KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_SECRET); - return 0; - } - if (impl->seedlen == 0) { - KDFerr(KDF_F_KDF_TLS1_PRF_DERIVE, KDF_R_MISSING_SEED); - return 0; - } - return tls1_prf_alg(impl->md, impl->sec, impl->seclen, - impl->seed, impl->seedlen, - key, keylen); -} - -const EVP_KDF tls1_prf_kdf_meth = { - EVP_KDF_TLS1_PRF, - kdf_tls1_prf_new, - kdf_tls1_prf_free, - kdf_tls1_prf_reset, - kdf_tls1_prf_ctrl, - kdf_tls1_prf_ctrl_str, - NULL, - kdf_tls1_prf_derive -}; - -/* - * Refer to "The TLS Protocol Version 1.0" Section 5 - * (https://tools.ietf.org/html/rfc2246#section-5) and - * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 - * (https://tools.ietf.org/html/rfc5246#section-5). - * - * P_<hash> is an expansion function that uses a single hash function to expand - * a secret and seed into an arbitrary quantity of output: - * - * P_<hash>(secret, seed) = HMAC_<hash>(secret, A(1) + seed) + - * HMAC_<hash>(secret, A(2) + seed) + - * HMAC_<hash>(secret, A(3) + seed) + ... - * - * where + indicates concatenation. P_<hash> can be iterated as many times as - * is necessary to produce the required quantity of data. - * - * A(i) is defined as: - * A(0) = seed - * A(i) = HMAC_<hash>(secret, A(i-1)) - */ -static int tls1_prf_P_hash(const EVP_MD *md, - const unsigned char *sec, size_t sec_len, - const unsigned char *seed, size_t seed_len, - unsigned char *out, size_t olen) -{ - size_t chunk; - EVP_MAC *mac = NULL; - EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL, *ctx_init = NULL; - unsigned char Ai[EVP_MAX_MD_SIZE]; - size_t Ai_len; - int ret = 0; - OSSL_PARAM params[4]; - int mac_flags; - const char *mdname = EVP_MD_name(md); - - mac = EVP_MAC_fetch(NULL, OSSL_MAC_NAME_HMAC, NULL); /* Implicit fetch */ - ctx_init = EVP_MAC_CTX_new(mac); - if (ctx_init == NULL) - goto err; - - /* TODO(3.0) rethink "flags", also see hmac.c in providers */ - mac_flags = EVP_MD_CTX_FLAG_NON_FIPS_ALLOW; - params[0] = OSSL_PARAM_construct_int(OSSL_MAC_PARAM_FLAGS, &mac_flags); - params[1] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, - (char *)mdname, 0); - params[2] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, - (void *)sec, sec_len); - params[3] = OSSL_PARAM_construct_end(); - if (!EVP_MAC_CTX_set_params(ctx_init, params)) - goto err; - if (!EVP_MAC_init(ctx_init)) - goto err; - chunk = EVP_MAC_size(ctx_init); - if (chunk == 0) - goto err; - /* A(0) = seed */ - ctx_Ai = EVP_MAC_CTX_dup(ctx_init); - if (ctx_Ai == NULL) - goto err; - if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len)) - goto err; - - for (;;) { - /* calc: A(i) = HMAC_<hash>(secret, A(i-1)) */ - if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len, sizeof(Ai))) - goto err; - EVP_MAC_CTX_free(ctx_Ai); - ctx_Ai = NULL; - - /* calc next chunk: HMAC_<hash>(secret, A(i) + seed) */ - ctx = EVP_MAC_CTX_dup(ctx_init); - if (ctx == NULL) - goto err; - if (!EVP_MAC_update(ctx, Ai, Ai_len)) - goto err; - /* save state for calculating next A(i) value */ - if (olen > chunk) { - ctx_Ai = EVP_MAC_CTX_dup(ctx); - if (ctx_Ai == NULL) - goto err; - } - if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len)) - goto err; - if (olen <= chunk) { - /* last chunk - use Ai as temp bounce buffer */ - if (!EVP_MAC_final(ctx, Ai, &Ai_len, sizeof(Ai))) - goto err; - memcpy(out, Ai, olen); - break; - } - if (!EVP_MAC_final(ctx, out, NULL, olen)) - goto err; - EVP_MAC_CTX_free(ctx); - ctx = NULL; - out += chunk; - olen -= chunk; - } - ret = 1; - err: - EVP_MAC_CTX_free(ctx); - EVP_MAC_CTX_free(ctx_Ai); - EVP_MAC_CTX_free(ctx_init); - EVP_MAC_free(mac); - OPENSSL_cleanse(Ai, sizeof(Ai)); - return ret; -} - -/* - * Refer to "The TLS Protocol Version 1.0" Section 5 - * (https://tools.ietf.org/html/rfc2246#section-5) and - * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 - * (https://tools.ietf.org/html/rfc5246#section-5). - * - * For TLS v1.0 and TLS v1.1: - * - * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR - * P_SHA-1(S2, label + seed) - * - * S1 is taken from the first half of the secret, S2 from the second half. - * - * L_S = length in bytes of secret; - * L_S1 = L_S2 = ceil(L_S / 2); - * - * For TLS v1.2: - * - * PRF(secret, label, seed) = P_<hash>(secret, label + seed) - */ -static int tls1_prf_alg(const EVP_MD *md, - const unsigned char *sec, size_t slen, - const unsigned char *seed, size_t seed_len, - unsigned char *out, size_t olen) -{ - if (EVP_MD_type(md) == NID_md5_sha1) { - /* TLS v1.0 and TLS v1.1 */ - size_t i; - unsigned char *tmp; - /* calc: L_S1 = L_S2 = ceil(L_S / 2) */ - size_t L_S1 = (slen + 1) / 2; - size_t L_S2 = L_S1; - - if (!tls1_prf_P_hash(EVP_md5(), sec, L_S1, - seed, seed_len, out, olen)) - return 0; - - if ((tmp = OPENSSL_malloc(olen)) == NULL) { - KDFerr(KDF_F_TLS1_PRF_ALG, ERR_R_MALLOC_FAILURE); - return 0; - } - if (!tls1_prf_P_hash(EVP_sha1(), sec + slen - L_S2, L_S2, - seed, seed_len, tmp, olen)) { - OPENSSL_clear_free(tmp, olen); - return 0; - } - for (i = 0; i < olen; i++) - out[i] ^= tmp[i]; - OPENSSL_clear_free(tmp, olen); - return 1; - } - - /* TLS v1.2 */ - if (!tls1_prf_P_hash(md, sec, slen, seed, seed_len, out, olen)) - return 0; - - return 1; -} diff --git a/crypto/kdf/x942kdf.c b/crypto/kdf/x942kdf.c deleted file mode 100644 index ce9ad61035..0000000000 --- a/crypto/kdf/x942kdf.c +++ /dev/null @@ -1,407 +0,0 @@ -/* - * Copyright 2019 The OpenSSL Project Authors. All Rights Reserved. - * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved. - * - * Licensed under the Apache License 2.0 (the "License"). You may not use - * this file except in compliance with the License. You can obtain a copy - * in the file LICENSE in the source distribution or at - * https://www.openssl.org/source/license.html - */ - -#include "e_os.h" - -#ifndef OPENSSL_NO_CMS - -# include <stdlib.h> -# include <stdarg.h> -# include <string.h> -# include <openssl/hmac.h> -# include <openssl/cms.h> -# include <openssl/evp.h> -# include <openssl/kdf.h> -# include <openssl/x509.h> -# include <openssl/obj_mac.h> -# include "internal/cryptlib.h" -# include "internal/evp_int.h" -# include "kdf_local.h" - -# define X942KDF_MAX_INLEN (1 << 30) - -struct evp_kdf_impl_st { - const EVP_MD *md; - unsigned char *secret; - size_t secret_len; - int cek_nid; - unsigned char *ukm; - size_t ukm_len; - size_t dkm_len; -}; - -/* A table of allowed wrapping algorithms and the associated output lengths */ -static const struct { - int nid; - size_t keklen; /* size in bytes */ -} kek_algs[] = { - { NID_id_smime_alg_CMS3DESwrap, 24 }, - { NID_id_smime_alg_CMSRC2wrap, 16 }, - { NID_id_aes128_wrap, 16 }, - { NID_id_aes192_wrap, 24 }, - { NID_id_aes256_wrap, 32 }, - { NID_id_camellia128_wrap, 16 }, - { NID_id_camellia192_wrap, 24 }, - { NID_id_camellia256_wrap, 32 } -}; - -/* Skip past an ASN1 structure: for OBJECT skip content octets too */ -static int skip_asn1(unsigned char **pp, long *plen, int exptag) -{ - int i, tag, xclass; - long tmplen; - const unsigned char *q = *pp; - - i = ASN1_get_object(&q, &tmplen, &tag, &xclass, *plen); - if ((i & 0x80) != 0 || tag != exptag || xclass != V_ASN1_UNIVERSAL) - return 0; - if (tag == V_ASN1_OBJECT) - q += tmplen; - *pp = (unsigned char *)q; - *plen -= q - *pp; - return 1; -} - -/* - * Encode the other info structure. - * - * RFC2631 Section 2.1.2 Contains the following definition for otherinfo - * - * OtherInfo ::= SEQUENCE { - * keyInfo KeySpecificInfo, - * partyAInfo [0] OCTET STRING OPTIONAL, - * suppPubInfo [2] OCTET STRING - * } - * - * KeySpecificInfo ::= SEQUENCE { - * algorithm OBJECT IDENTIFIER, - * counter OCTET STRING SIZE (4..4) - * } - * - * |nid| is the algorithm object identifier. - * |keylen| is the length (in bytes) of the generated KEK. It is stored into - * suppPubInfo (in bits). - * |ukm| is the optional user keying material that is stored into partyAInfo. It - * can be NULL. - * |ukmlen| is the user keying material length (in bytes). - * |der| is the returned encoded data. It must be freed by the caller. - * |der_len| is the returned size of the encoded data. - * |out_ctr| returns a pointer to the counter data which is embedded inside the - * encoded data. This allows the counter bytes to be updated without re-encoding. - * - * Returns: 1 if successfully encoded, or 0 otherwise. - * Assumptions: |der|, |der_len| & |out_ctr| are not NULL. - */ -static int x942_encode_otherinfo(int nid, size_t keylen, - const unsigned char *ukm, size_t ukmlen, - unsigned char **der, size_t *der_len, - unsigned char **out_ctr) -{ - unsigned char *p, *encoded = NULL; - int ret = 0, encoded_len; - long tlen; - /* "magic" value to check offset is sane */ - static unsigned char ctr[4] = { 0x00, 0x00, 0x00, 0x01 }; - X509_ALGOR *ksi = NULL; - ASN1_OBJECT *alg_oid = NULL; - ASN1_OCTET_STRING *ctr_oct = NULL, *ukm_oct = NULL; - - /* set the KeySpecificInfo - which contains an algorithm oid and counter */ - ksi = X509_ALGOR_new(); - alg_oid = OBJ_dup(OBJ_nid2obj(nid)); - ctr_oct = ASN1_OCTET_STRING_new(); - if (ksi == NULL - || alg_oid == NULL - || ctr_oct == NULL - || !ASN1_OCTET_STRING_set(ctr_oct, ctr, sizeof(ctr)) - || !X509_ALGOR_set0(ksi, alg_oid, V_ASN1_OCTET_STRING, ctr_oct)) - goto err; - /* NULL these as they now belong to ksi */ - alg_oid = NULL; - ctr_oct = NULL; - - /* Set the optional partyAInfo */ - if (ukm != NULL) { - ukm_oct = ASN1_OCTET_STRING_new(); - if (ukm_oct == NULL) - goto err; - ASN1_OCTET_STRING_set(ukm_oct, (unsigned char *)ukm, ukmlen); - } - /* Generate the OtherInfo DER data */ - encoded_len = CMS_SharedInfo_encode(&encoded, ksi, ukm_oct, keylen); - if (encoded_len <= 0) - goto err; - - /* Parse the encoded data to find the offset of the counter data */ - p = encoded; - tlen = (long)encoded_len; - if (skip_asn1(&p, &tlen, V_ASN1_SEQUENCE) - && skip_asn1(&p, &tlen, V_ASN1_SEQUENCE) - && skip_asn1(&p, &tlen, V_ASN1_OBJECT) - && skip_asn1(&p, &tlen, V_ASN1_OCTET_STRING) - && CRYPTO_memcmp(p, ctr, 4) == 0) { - *out_ctr = p; - *der = encoded; - *der_len = (size_t)encoded_len; - ret = 1; - } -err: - if (ret != 1) - OPENSSL_free(encoded); - ASN1_OCTET_STRING_free(ctr_oct); - ASN1_OCTET_STRING_free(ukm_oct); - ASN1_OBJECT_free(alg_oid); - X509_ALGOR_free(ksi); - return ret; -} - -static int x942kdf_hash_kdm(const EVP_MD *kdf_md, - const unsigned char *z, size_t z_len, - const unsigned char *other, size_t other_len, - unsigned char *ctr, - unsigned char *derived_key, size_t derived_key_len) -{ - int ret = 0, hlen; - size_t counter, out_len, len = derived_key_len; - unsigned char mac[EVP_MAX_MD_SIZE]; - unsigned char *out = derived_key; - EVP_MD_CTX *ctx = NULL, *ctx_init = NULL; - - if (z_len > X942KDF_MAX_INLEN || other_len > X942KDF_MAX_INLEN - || derived_key_len > X942KDF_MAX_INLEN - || derived_key_len == 0) { - KDFerr(KDF_F_X942KDF_HASH_KDM, KDF_R_BAD_LENGTH); - return 0; - } - - hlen = EVP_MD_size(kdf_md); - if (hlen <= 0) - return 0; - out_len = (size_t)hlen; - - ctx = EVP_MD_CTX_create(); - ctx_init = EVP_MD_CTX_create(); - if (ctx == NULL || ctx_init == NULL) - goto end; - - if (!EVP_DigestInit(ctx_init, kdf_md)) - goto end; - - for (counter = 1;; counter++) { - /* updating the ctr modifies 4 bytes in the 'other' buffer */ - ctr[0] = (unsigned char)((counter >> 24) & 0xff); - ctr[1] = (unsigned char)((counter >> 16) & 0xff); - ctr[2] = (unsigned char)((counter >> 8) & 0xff); - ctr[3] = (unsigned char)(counter & 0xff); - - if (!EVP_MD_CTX_copy_ex(ctx, ctx_init) - || !EVP_DigestUpdate(ctx, z, z_len) - || !EVP_DigestUpdate(ctx, other, other_len)) - goto end; - if (len >= out_len) { - if (!EVP_DigestFinal_ex(ctx, out, NULL)) - goto end; - out += out_len; - len -= out_len; - if (len == 0) - break; - } else { - if (!EVP_DigestFinal_ex(ctx, mac, NULL)) - goto end; - memcpy(out, mac, len); - break; - } - } - ret = 1; -end: - EVP_MD_CTX_free(ctx); - EVP_MD_CTX_free(ctx_init); - OPENSSL_cleanse(mac, sizeof(mac)); - return ret; -} - -static EVP_KDF_IMPL *x942kdf_new(void) -{ - EVP_KDF_IMPL *impl; - - if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL) - KDFerr(KDF_F_X942KDF_NEW, ERR_R_MALLOC_FAILURE); - return impl; -} - -static void x942kdf_reset(EVP_KDF_IMPL *impl) -{ - OPENSSL_clear_free(impl->secret, impl->secret_len); - OPENSSL_clear_free(impl->ukm, impl->ukm_len); - memset(impl, 0, sizeof(*impl)); -} - -static void x942kdf_free(EVP_KDF_IMPL *impl) -{ - x942kdf_reset(impl); - OPENSSL_free(impl); -} - -static int x942kdf_set_buffer(va_list args, unsigned char **out, size_t *out_len) -{ - const unsigned char *p; - size_t len; - - p = va_arg(args, const unsigned char *); - len = va_arg(args, size_t); - if (len == 0 || p == NULL) - return 1; - - OPENSSL_free(*out); - *out = OPENSSL_memdup(p, len); - if (*out == NULL) - return 0; - - *out_len = len; - return 1; -} - -static int x942kdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args) -{ - const EVP_MD *md; - char *alg_str = NULL; - size_t i; - - switch (cmd) { - case EVP_KDF_CTRL_SET_MD: - md = va_arg(args, const EVP_MD *); - if (md == NULL) - return 0; - - impl->md = md; - return 1; - - case EVP_KDF_CTRL_SET_KEY: - return x942kdf_set_buffer(args, &impl->secret, &impl->secret_len); - - case EVP_KDF_CTRL_SET_UKM: - return x942kdf_set_buffer(args, &impl->ukm, &impl->ukm_len); - - case EVP_KDF_CTRL_SET_CEK_ALG: - alg_str = va_arg(args, char *); - if (alg_str == NULL) - return 0; - impl->cek_nid = OBJ_sn2nid(alg_str); - for (i = 0; i < (size_t)OSSL_NELEM(kek_algs); ++i) { - if (kek_algs[i].nid == impl->cek_nid) { - impl->dkm_len = kek_algs[i].keklen; - return 1; - } - } - KDFerr(KDF_F_X942KDF_CTRL, KDF_R_UNSUPPORTED_CEK_ALG); - return 0; - - default: - return -2; - } -} - -static int x942kdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type, - const char *value) -{ - if (strcmp(type, "digest") == 0) - return kdf_md2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_MD, value); - - if (strcmp(type, "secret") == 0 || strcmp(type, "key") == 0) - return kdf_str2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_KEY, - value); - - if (strcmp(type, "hexsecret") == 0 || strcmp(type, "hexkey") == 0) - return kdf_hex2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_KEY, - value); - - if (strcmp(type, "ukm") == 0) - return kdf_str2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_UKM, - value); - - if (strcmp(type, "hexukm") == 0) - return kdf_hex2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_UKM, - value); - - if (strcmp(type, "cekalg") == 0) - return kdf_str2ctrl(impl, x942kdf_ctrl, EVP_KDF_CTRL_SET_CEK_ALG, - value); - - return -2; -} - -static size_t x942kdf_size(EVP_KDF_IMPL *impl) -{ - int len; - - if (impl->md == NULL) { - KDFerr(KDF_F_X942KDF_SIZE, KDF_R_MISSING_MESSAGE_DIGEST); - return 0; - } - len = EVP_MD_size(impl->md); - return (len <= 0) ? 0 : (size_t)len; -} - -static int x942kdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen) -{ - int ret = 0; - unsigned char *ctr; - unsigned char *der = NULL; - size_t der_len = 0; - - if (impl->secret == NULL) { - KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_MISSING_SECRET); - return 0; - } - if (impl->md == NULL) { - KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST); - return 0; - } - if (impl->cek_nid == NID_undef) { - KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_MISSING_CEK_ALG); - return 0; - } - if (impl->ukm != NULL && impl->ukm_len >= X942KDF_MAX_INLEN) { - /* - * Note the ukm length MUST be 512 bits. - * For backwards compatibility the old check is being done. - */ - KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_INAVLID_UKM_LEN); - return 0; - } - if (keylen != impl->dkm_len) { - KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_MISSING_CEK_ALG); - return 0; - } - /* generate the otherinfo der */ - if (!x942_encode_otherinfo(impl->cek_nid, impl->dkm_len, - impl->ukm, impl->ukm_len, - &der, &der_len, &ctr)) { - KDFerr(KDF_F_X942KDF_DERIVE, KDF_R_BAD_ENCODING); - return 0; - } - ret = x942kdf_hash_kdm(impl->md, impl->secret, impl->secret_len, - der, der_len, ctr, key, keylen); - OPENSSL_free(der); - return ret; -} - -const EVP_KDF x942_kdf_meth = { - EVP_KDF_X942, - x942kdf_new, - x942kdf_free, - x942kdf_reset, - x942kdf_ctrl, - x942kdf_ctrl_str, - x942kdf_size, - x942kdf_derive -}; - -#endif /* OPENSSL_NO_CMS */ |