1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
/*
* Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <openssl/bn.h>
#include "bn_lcl.h"
/* X9.31 routines for prime derivation */
/*
* X9.31 prime derivation. This is used to generate the primes pi (p1, p2,
* q1, q2) from a parameter Xpi by checking successive odd integers.
*/
static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx,
BN_GENCB *cb)
{
int i = 0, is_prime;
if (!BN_copy(pi, Xpi))
return 0;
if (!BN_is_odd(pi) && !BN_add_word(pi, 1))
return 0;
for (;;) {
i++;
BN_GENCB_call(cb, 0, i);
/* NB 27 MR is specified in X9.31 */
is_prime = BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb);
if (is_prime < 0)
return 0;
if (is_prime)
break;
if (!BN_add_word(pi, 2))
return 0;
}
BN_GENCB_call(cb, 2, i);
return 1;
}
/*
* This is the main X9.31 prime derivation function. From parameters Xp1, Xp2
* and Xp derive the prime p. If the parameters p1 or p2 are not NULL they
* will be returned too: this is needed for testing.
*/
int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
const BIGNUM *Xp, const BIGNUM *Xp1,
const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
BN_GENCB *cb)
{
int ret = 0;
BIGNUM *t, *p1p2, *pm1;
/* Only even e supported */
if (!BN_is_odd(e))
return 0;
BN_CTX_start(ctx);
if (p1 == NULL)
p1 = BN_CTX_get(ctx);
if (p2 == NULL)
p2 = BN_CTX_get(ctx);
t = BN_CTX_get(ctx);
p1p2 = BN_CTX_get(ctx);
pm1 = BN_CTX_get(ctx);
if (pm1 == NULL)
goto err;
if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
goto err;
if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
goto err;
if (!BN_mul(p1p2, p1, p2, ctx))
goto err;
/* First set p to value of Rp */
if (!BN_mod_inverse(p, p2, p1, ctx))
goto err;
if (!BN_mul(p, p, p2, ctx))
goto err;
if (!BN_mod_inverse(t, p1, p2, ctx))
goto err;
if (!BN_mul(t, t, p1, ctx))
goto err;
if (!BN_sub(p, p, t))
goto err;
if (p->neg && !BN_add(p, p, p1p2))
goto err;
/* p now equals Rp */
if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
goto err;
if (!BN_add(p, p, Xp))
goto err;
/* p now equals Yp0 */
for (;;) {
int i = 1;
BN_GENCB_call(cb, 0, i++);
if (!BN_copy(pm1, p))
goto err;
if (!BN_sub_word(pm1, 1))
goto err;
if (!BN_gcd(t, pm1, e, ctx))
goto err;
if (BN_is_one(t)) {
/*
* X9.31 specifies 8 MR and 1 Lucas test or any prime test
* offering similar or better guarantees 50 MR is considerably
* better.
*/
int r = BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb);
if (r < 0)
goto err;
if (r)
break;
}
if (!BN_add(p, p, p1p2))
goto err;
}
BN_GENCB_call(cb, 3, 0);
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/*
* Generate pair of parameters Xp, Xq for X9.31 prime generation. Note: nbits
* parameter is sum of number of bits in both.
*/
int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx)
{
BIGNUM *t;
int i;
/*
* Number of bits for each prime is of the form 512+128s for s = 0, 1,
* ...
*/
if ((nbits < 1024) || (nbits & 0xff))
return 0;
nbits >>= 1;
/*
* The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits
* - 1. By setting the top two bits we ensure that the lower bound is
* exceeded.
*/
if (!BN_priv_rand(Xp, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY))
goto err;
BN_CTX_start(ctx);
t = BN_CTX_get(ctx);
if (t == NULL)
goto err;
for (i = 0; i < 1000; i++) {
if (!BN_priv_rand(Xq, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY))
goto err;
/* Check that |Xp - Xq| > 2^(nbits - 100) */
if (!BN_sub(t, Xp, Xq))
goto err;
if (BN_num_bits(t) > (nbits - 100))
break;
}
BN_CTX_end(ctx);
if (i < 1000)
return 1;
return 0;
err:
BN_CTX_end(ctx);
return 0;
}
/*
* Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and
* Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the
* relevant parameter will be stored in it. Due to the fact that |Xp - Xq| >
* 2^(nbits - 100) must be satisfied Xp and Xq are generated using the
* previous function and supplied as input.
*/
int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
BIGNUM *Xp1, BIGNUM *Xp2,
const BIGNUM *Xp,
const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
{
int ret = 0;
BN_CTX_start(ctx);
if (Xp1 == NULL)
Xp1 = BN_CTX_get(ctx);
if (Xp2 == NULL)
Xp2 = BN_CTX_get(ctx);
if (Xp1 == NULL || Xp2 == NULL)
goto error;
if (!BN_priv_rand(Xp1, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY))
goto error;
if (!BN_priv_rand(Xp2, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY))
goto error;
if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb))
goto error;
ret = 1;
error:
BN_CTX_end(ctx);
return ret;
}
|