summaryrefslogtreecommitdiffstats
path: root/crypto/ec/curve448/decaf/point_255.h
blob: 94e30a5b897335a790946a6dbb20d4e18ca8ad77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
/**
 * @file decaf/point_255.h
 * @author Mike Hamburg
 *
 * @copyright
 *   Copyright (c) 2015-2016 Cryptography Research, Inc.  \n
 *   Released under the MIT License.  See LICENSE.txt for license information.
 *
 * @brief A group of prime order p, based on Curve25519.
 *
 * @warning This file was automatically generated in Python.
 * Please do not edit it.
 */

#ifndef __DECAF_POINT_255_H__
#define __DECAF_POINT_255_H__ 1

#include <decaf/common.h>

#ifdef __cplusplus
extern "C" {
#endif

/** @cond internal */
#define DECAF_255_SCALAR_LIMBS ((253-1)/DECAF_WORD_BITS+1)
/** @endcond */

/** The number of bits in a scalar */
#define DECAF_255_SCALAR_BITS 253

/** @cond internal */
#ifndef __DECAF_25519_GF_DEFINED__
#define __DECAF_25519_GF_DEFINED__ 1
/** @brief Galois field element internal structure */
typedef struct gf_25519_s {
    decaf_word_t limb[320/DECAF_WORD_BITS];
} __attribute__((aligned(32))) gf_25519_s, gf_25519_t[1];
#endif /* __DECAF_25519_GF_DEFINED__ */
/** @endcond */

/** Number of bytes in a serialized point. */
#define DECAF_255_SER_BYTES 32

/** Number of bytes in an elligated point.  For now set the same as SER_BYTES
 * but could be different for other curves.
 */
#define DECAF_255_HASH_BYTES 32

/** Number of bytes in a serialized scalar. */
#define DECAF_255_SCALAR_BYTES 32

/** Number of bits in the "which" field of an elligator inverse */
#define DECAF_255_INVERT_ELLIGATOR_WHICH_BITS 5

/** The cofactor the curve would have, if we hadn't removed it */
#define DECAF_255_REMOVED_COFACTOR 8

/** X25519 encoding ratio. */
#define DECAF_X25519_ENCODE_RATIO 4

/** Number of bytes in an x25519 public key */
#define DECAF_X25519_PUBLIC_BYTES 32

/** Number of bytes in an x25519 private key */
#define DECAF_X25519_PRIVATE_BYTES 32

/** Twisted Edwards extended homogeneous coordinates */
typedef struct decaf_255_point_s {
    /** @cond internal */
    gf_25519_t x,y,z,t;
    /** @endcond */
} decaf_255_point_t[1];

/** Precomputed table based on a point.  Can be trivial implementation. */
struct decaf_255_precomputed_s;

/** Precomputed table based on a point.  Can be trivial implementation. */
typedef struct decaf_255_precomputed_s decaf_255_precomputed_s; 

/** Size and alignment of precomputed point tables. */
extern const size_t decaf_255_sizeof_precomputed_s DECAF_API_VIS, decaf_255_alignof_precomputed_s DECAF_API_VIS;

/** Scalar is stored packed, because we don't need the speed. */
typedef struct decaf_255_scalar_s {
    /** @cond internal */
    decaf_word_t limb[DECAF_255_SCALAR_LIMBS];
    /** @endcond */
} decaf_255_scalar_t[1];

/** A scalar equal to 1. */
extern const decaf_255_scalar_t decaf_255_scalar_one DECAF_API_VIS;

/** A scalar equal to 0. */
extern const decaf_255_scalar_t decaf_255_scalar_zero DECAF_API_VIS;

/** The identity point on the curve. */
extern const decaf_255_point_t decaf_255_point_identity DECAF_API_VIS;

/** An arbitrarily chosen base point on the curve. */
extern const decaf_255_point_t decaf_255_point_base DECAF_API_VIS;

/** Precomputed table for the base point on the curve. */
extern const struct decaf_255_precomputed_s *decaf_255_precomputed_base DECAF_API_VIS;

/**
 * @brief Read a scalar from wire format or from bytes.
 *
 * @param [in] ser Serialized form of a scalar.
 * @param [out] out Deserialized form.
 *
 * @retval DECAF_SUCCESS The scalar was correctly encoded.
 * @retval DECAF_FAILURE The scalar was greater than the modulus,
 * and has been reduced modulo that modulus.
 */
decaf_error_t decaf_255_scalar_decode (
    decaf_255_scalar_t out,
    const unsigned char ser[DECAF_255_SCALAR_BYTES]
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Read a scalar from wire format or from bytes.  Reduces mod
 * scalar prime.
 *
 * @param [in] ser Serialized form of a scalar.
 * @param [in] ser_len Length of serialized form.
 * @param [out] out Deserialized form.
 */
void decaf_255_scalar_decode_long (
    decaf_255_scalar_t out,
    const unsigned char *ser,
    size_t ser_len
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
    
/**
 * @brief Serialize a scalar to wire format.
 *
 * @param [out] ser Serialized form of a scalar.
 * @param [in] s Deserialized scalar.
 */
void decaf_255_scalar_encode (
    unsigned char ser[DECAF_255_SCALAR_BYTES],
    const decaf_255_scalar_t s
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_NOINLINE;
        
/**
 * @brief Add two scalars.  The scalars may use the same memory.
 * @param [in] a One scalar.
 * @param [in] b Another scalar.
 * @param [out] out a+b.
 */
void decaf_255_scalar_add (
    decaf_255_scalar_t out,
    const decaf_255_scalar_t a,
    const decaf_255_scalar_t b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Compare two scalars.
 * @param [in] a One scalar.
 * @param [in] b Another scalar.
 * @retval DECAF_TRUE The scalars are equal.
 * @retval DECAF_FALSE The scalars are not equal.
 */    
decaf_bool_t decaf_255_scalar_eq (
    const decaf_255_scalar_t a,
    const decaf_255_scalar_t b
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Subtract two scalars.  The scalars may use the same memory.
 * @param [in] a One scalar.
 * @param [in] b Another scalar.
 * @param [out] out a-b.
 */  
void decaf_255_scalar_sub (
    decaf_255_scalar_t out,
    const decaf_255_scalar_t a,
    const decaf_255_scalar_t b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Multiply two scalars.  The scalars may use the same memory.
 * @param [in] a One scalar.
 * @param [in] b Another scalar.
 * @param [out] out a*b.
 */  
void decaf_255_scalar_mul (
    decaf_255_scalar_t out,
    const decaf_255_scalar_t a,
    const decaf_255_scalar_t b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
        
/**
* @brief Halve a scalar.  The scalars may use the same memory.
* @param [in] a A scalar.
* @param [out] out a/2.
*/
void decaf_255_scalar_halve (
   decaf_255_scalar_t out,
   const decaf_255_scalar_t a
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Invert a scalar.  When passed zero, return 0.  The input and output may alias.
 * @param [in] a A scalar.
 * @param [out] out 1/a.
 * @return DECAF_SUCCESS The input is nonzero.
 */  
decaf_error_t decaf_255_scalar_invert (
    decaf_255_scalar_t out,
    const decaf_255_scalar_t a
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Copy a scalar.  The scalars may use the same memory, in which
 * case this function does nothing.
 * @param [in] a A scalar.
 * @param [out] out Will become a copy of a.
 */
static inline void DECAF_NONNULL decaf_255_scalar_copy (
    decaf_255_scalar_t out,
    const decaf_255_scalar_t a
) {
    *out = *a;
}

/**
 * @brief Set a scalar to an unsigned 64-bit integer.
 * @param [in] a An integer.
 * @param [out] out Will become equal to a.
 */  
void decaf_255_scalar_set_unsigned (
    decaf_255_scalar_t out,
    uint64_t a
) DECAF_API_VIS DECAF_NONNULL;

/**
 * @brief Encode a point as a sequence of bytes.
 *
 * @param [out] ser The byte representation of the point.
 * @param [in] pt The point to encode.
 */
void decaf_255_point_encode (
    uint8_t ser[DECAF_255_SER_BYTES],
    const decaf_255_point_t pt
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Decode a point from a sequence of bytes.
 *
 * Every point has a unique encoding, so not every
 * sequence of bytes is a valid encoding.  If an invalid
 * encoding is given, the output is undefined.
 *
 * @param [out] pt The decoded point.
 * @param [in] ser The serialized version of the point.
 * @param [in] allow_identity DECAF_TRUE if the identity is a legal input.
 * @retval DECAF_SUCCESS The decoding succeeded.
 * @retval DECAF_FAILURE The decoding didn't succeed, because
 * ser does not represent a point.
 */
decaf_error_t decaf_255_point_decode (
    decaf_255_point_t pt,
    const uint8_t ser[DECAF_255_SER_BYTES],
    decaf_bool_t allow_identity
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Copy a point.  The input and output may alias,
 * in which case this function does nothing.
 *
 * @param [out] a A copy of the point.
 * @param [in] b Any point.
 */
static inline void DECAF_NONNULL decaf_255_point_copy (
    decaf_255_point_t a,
    const decaf_255_point_t b
) {
    *a=*b;
}

/**
 * @brief Test whether two points are equal.  If yes, return
 * DECAF_TRUE, else return DECAF_FALSE.
 *
 * @param [in] a A point.
 * @param [in] b Another point.
 * @retval DECAF_TRUE The points are equal.
 * @retval DECAF_FALSE The points are not equal.
 */
decaf_bool_t decaf_255_point_eq (
    const decaf_255_point_t a,
    const decaf_255_point_t b
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Add two points to produce a third point.  The
 * input points and output point can be pointers to the same
 * memory.
 *
 * @param [out] sum The sum a+b.
 * @param [in] a An addend.
 * @param [in] b An addend.
 */
void decaf_255_point_add (
    decaf_255_point_t sum,
    const decaf_255_point_t a,
    const decaf_255_point_t b
) DECAF_API_VIS DECAF_NONNULL;

/**
 * @brief Double a point.  Equivalent to
 * decaf_255_point_add(two_a,a,a), but potentially faster.
 *
 * @param [out] two_a The sum a+a.
 * @param [in] a A point.
 */
void decaf_255_point_double (
    decaf_255_point_t two_a,
    const decaf_255_point_t a
) DECAF_API_VIS DECAF_NONNULL;

/**
 * @brief Subtract two points to produce a third point.  The
 * input points and output point can be pointers to the same
 * memory.
 *
 * @param [out] diff The difference a-b.
 * @param [in] a The minuend.
 * @param [in] b The subtrahend.
 */
void decaf_255_point_sub (
    decaf_255_point_t diff,
    const decaf_255_point_t a,
    const decaf_255_point_t b
) DECAF_API_VIS DECAF_NONNULL;
    
/**
 * @brief Negate a point to produce another point.  The input
 * and output points can use the same memory.
 *
 * @param [out] nega The negated input point
 * @param [in] a The input point.
 */
void decaf_255_point_negate (
   decaf_255_point_t nega,
   const decaf_255_point_t a
) DECAF_API_VIS DECAF_NONNULL;

/**
 * @brief Multiply a base point by a scalar: scaled = scalar*base.
 *
 * @param [out] scaled The scaled point base*scalar
 * @param [in] base The point to be scaled.
 * @param [in] scalar The scalar to multiply by.
 */
void decaf_255_point_scalarmul (
    decaf_255_point_t scaled,
    const decaf_255_point_t base,
    const decaf_255_scalar_t scalar
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Multiply a base point by a scalar: scaled = scalar*base.
 * This function operates directly on serialized forms.
 *
 * @warning This function is experimental.  It may not be supported
 * long-term.
 *
 * @param [out] scaled The scaled point base*scalar
 * @param [in] base The point to be scaled.
 * @param [in] scalar The scalar to multiply by.
 * @param [in] allow_identity Allow the input to be the identity.
 * @param [in] short_circuit Allow a fast return if the input is illegal.
 *
 * @retval DECAF_SUCCESS The scalarmul succeeded.
 * @retval DECAF_FAILURE The scalarmul didn't succeed, because
 * base does not represent a point.
 */
decaf_error_t decaf_255_direct_scalarmul (
    uint8_t scaled[DECAF_255_SER_BYTES],
    const uint8_t base[DECAF_255_SER_BYTES],
    const decaf_255_scalar_t scalar,
    decaf_bool_t allow_identity,
    decaf_bool_t short_circuit
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE;

/**
 * @brief RFC 7748 Diffie-Hellman scalarmul.  This function uses a different
 * (non-Decaf) encoding.
 *
 * @param [out] scaled The scaled point base*scalar
 * @param [in] base The point to be scaled.
 * @param [in] scalar The scalar to multiply by.
 *
 * @retval DECAF_SUCCESS The scalarmul succeeded.
 * @retval DECAF_FAILURE The scalarmul didn't succeed, because the base
 * point is in a small subgroup.
 */
decaf_error_t decaf_x25519 (
    uint8_t out[DECAF_X25519_PUBLIC_BYTES],
    const uint8_t base[DECAF_X25519_PUBLIC_BYTES],
    const uint8_t scalar[DECAF_X25519_PRIVATE_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE;

/**
 * @brief Multiply a point by DECAF_X25519_ENCODE_RATIO,
 * then encode it like RFC 7748.
 *
 * This function is mainly used internally, but is exported in case
 * it will be useful.
 *
 * The ratio is necessary because the internal representation doesn't
 * track the cofactor information, so on output we must clear the cofactor.
 * This would multiply by the cofactor, but in fact internally libdecaf's
 * points are always even, so it multiplies by half the cofactor instead.
 *
 * As it happens, this aligns with the base point definitions; that is,
 * if you pass the Decaf/Ristretto base point to this function, the result
 * will be DECAF_X25519_ENCODE_RATIO times the X25519
 * base point.
 *
 * @param [out] out The scaled and encoded point.
 * @param [in] p The point to be scaled and encoded.
 */
void decaf_255_point_mul_by_ratio_and_encode_like_x25519 (
    uint8_t out[DECAF_X25519_PUBLIC_BYTES],
    const decaf_255_point_t p
) DECAF_API_VIS DECAF_NONNULL;

/** The base point for X25519 Diffie-Hellman */
extern const uint8_t decaf_x25519_base_point[DECAF_X25519_PUBLIC_BYTES] DECAF_API_VIS;

/**
 * @brief RFC 7748 Diffie-Hellman base point scalarmul.  This function uses
 * a different (non-Decaf) encoding.
 *
 * @deprecated Renamed to decaf_x25519_derive_public_key.
 * I have no particular timeline for removing this name.
 *
 * @param [out] scaled The scaled point base*scalar
 * @param [in] scalar The scalar to multiply by.
 */
void decaf_x25519_generate_key (
    uint8_t out[DECAF_X25519_PUBLIC_BYTES],
    const uint8_t scalar[DECAF_X25519_PRIVATE_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_DEPRECATED("Renamed to decaf_x25519_derive_public_key");
    
/**
 * @brief RFC 7748 Diffie-Hellman base point scalarmul.  This function uses
 * a different (non-Decaf) encoding.
 *
 * Does exactly the same thing as decaf_x25519_generate_key,
 * but has a better name.
 *
 * @param [out] scaled The scaled point base*scalar
 * @param [in] scalar The scalar to multiply by.
 */
void decaf_x25519_derive_public_key (
    uint8_t out[DECAF_X25519_PUBLIC_BYTES],
    const uint8_t scalar[DECAF_X25519_PRIVATE_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/* FUTURE: uint8_t decaf_255_encode_like_curve25519) */

/**
 * @brief Precompute a table for fast scalar multiplication.
 * Some implementations do not include precomputed points; for
 * those implementations, this implementation simply copies the
 * point.
 *
 * @param [out] a A precomputed table of multiples of the point.
 * @param [in] b Any point.
 */
void decaf_255_precompute (
    decaf_255_precomputed_s *a,
    const decaf_255_point_t b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Multiply a precomputed base point by a scalar:
 * scaled = scalar*base.
 * Some implementations do not include precomputed points; for
 * those implementations, this function is the same as
 * decaf_255_point_scalarmul
 *
 * @param [out] scaled The scaled point base*scalar
 * @param [in] base The point to be scaled.
 * @param [in] scalar The scalar to multiply by.
 */
void decaf_255_precomputed_scalarmul (
    decaf_255_point_t scaled,
    const decaf_255_precomputed_s *base,
    const decaf_255_scalar_t scalar
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Multiply two base points by two scalars:
 * scaled = scalar1*base1 + scalar2*base2.
 *
 * Equivalent to two calls to decaf_255_point_scalarmul, but may be
 * faster.
 *
 * @param [out] combo The linear combination scalar1*base1 + scalar2*base2.
 * @param [in] base1 A first point to be scaled.
 * @param [in] scalar1 A first scalar to multiply by.
 * @param [in] base2 A second point to be scaled.
 * @param [in] scalar2 A second scalar to multiply by.
 */
void decaf_255_point_double_scalarmul (
    decaf_255_point_t combo,
    const decaf_255_point_t base1,
    const decaf_255_scalar_t scalar1,
    const decaf_255_point_t base2,
    const decaf_255_scalar_t scalar2
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
    
/**
 * Multiply one base point by two scalars:
 *
 * a1 = scalar1 * base
 * a2 = scalar2 * base
 *
 * Equivalent to two calls to decaf_255_point_scalarmul, but may be
 * faster.
 *
 * @param [out] a1 The first multiple.  It may be the same as the input point.
 * @param [out] a2 The second multiple.  It may be the same as the input point.
 * @param [in] base1 A point to be scaled.
 * @param [in] scalar1 A first scalar to multiply by.
 * @param [in] scalar2 A second scalar to multiply by.
 */
void decaf_255_point_dual_scalarmul (
    decaf_255_point_t a1,
    decaf_255_point_t a2,
    const decaf_255_point_t base1,
    const decaf_255_scalar_t scalar1,
    const decaf_255_scalar_t scalar2
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Multiply two base points by two scalars:
 * scaled = scalar1*decaf_255_point_base + scalar2*base2.
 *
 * Otherwise equivalent to decaf_255_point_double_scalarmul, but may be
 * faster at the expense of being variable time.
 *
 * @param [out] combo The linear combination scalar1*base + scalar2*base2.
 * @param [in] scalar1 A first scalar to multiply by.
 * @param [in] base2 A second point to be scaled.
 * @param [in] scalar2 A second scalar to multiply by.
 *
 * @warning: This function takes variable time, and may leak the scalars
 * used.  It is designed for signature verification.
 */
void decaf_255_base_double_scalarmul_non_secret (
    decaf_255_point_t combo,
    const decaf_255_scalar_t scalar1,
    const decaf_255_point_t base2,
    const decaf_255_scalar_t scalar2
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Constant-time decision between two points.  If pick_b
 * is zero, out = a; else out = b.
 *
 * @param [out] out The output.  It may be the same as either input.
 * @param [in] a Any point.
 * @param [in] b Any point.
 * @param [in] pick_b If nonzero, choose point b.
 */
void decaf_255_point_cond_sel (
    decaf_255_point_t out,
    const decaf_255_point_t a,
    const decaf_255_point_t b,
    decaf_word_t pick_b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Constant-time decision between two scalars.  If pick_b
 * is zero, out = a; else out = b.
 *
 * @param [out] out The output.  It may be the same as either input.
 * @param [in] a Any scalar.
 * @param [in] b Any scalar.
 * @param [in] pick_b If nonzero, choose scalar b.
 */
void decaf_255_scalar_cond_sel (
    decaf_255_scalar_t out,
    const decaf_255_scalar_t a,
    const decaf_255_scalar_t b,
    decaf_word_t pick_b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Test that a point is valid, for debugging purposes.
 *
 * @param [in] to_test The point to test.
 * @retval DECAF_TRUE The point is valid.
 * @retval DECAF_FALSE The point is invalid.
 */
decaf_bool_t decaf_255_point_valid (
    const decaf_255_point_t to_test
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Torque a point, for debugging purposes.  The output
 * will be equal to the input.
 *
 * @param [out] q The point to torque.
 * @param [in] p The point to torque.
 */
void decaf_255_point_debugging_torque (
    decaf_255_point_t q,
    const decaf_255_point_t p
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Projectively scale a point, for debugging purposes.
 * The output will be equal to the input, and will be valid
 * even if the factor is zero.
 *
 * @param [out] q The point to scale.
 * @param [in] p The point to scale.
 * @param [in] factor Serialized GF factor to scale.
 */
void decaf_255_point_debugging_pscale (
    decaf_255_point_t q,
    const decaf_255_point_t p,
    const unsigned char factor[DECAF_255_SER_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Almost-Elligator-like hash to curve.
 *
 * Call this function with the output of a hash to make a hash to the curve.
 *
 * This function runs Elligator2 on the decaf_255 Jacobi quartic model.  It then
 * uses the isogeny to put the result in twisted Edwards form.  As a result,
 * it is safe (cannot produce points of order 4), and would be compatible with
 * hypothetical other implementations of Decaf using a Montgomery or untwisted
 * Edwards model.
 *
 * Unlike Elligator, this function may be up to 4:1 on [0,(p-1)/2]:
 *   A factor of 2 due to the isogeny.
 *   A factor of 2 because we quotient out the 2-torsion.
 *
 * This makes it about 8:1 overall, or 16:1 overall on curves with cofactor 8.
 *
 * Negating the input (mod q) results in the same point.  Inverting the input
 * (mod q) results in the negative point.  This is the same as Elligator.
 *
 * This function isn't quite indifferentiable from a random oracle.
 * However, it is suitable for many protocols, including SPEKE and SPAKE2 EE. 
 * Furthermore, calling it twice with independent seeds and adding the results
 * is indifferentiable from a random oracle.
 *
 * @param [in] hashed_data Output of some hash function.
 * @param [out] pt The data hashed to the curve.
 */
void
decaf_255_point_from_hash_nonuniform (
    decaf_255_point_t pt,
    const unsigned char hashed_data[DECAF_255_HASH_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Indifferentiable hash function encoding to curve.
 *
 * Equivalent to calling decaf_255_point_from_hash_nonuniform twice and adding.
 *
 * @param [in] hashed_data Output of some hash function.
 * @param [out] pt The data hashed to the curve.
 */ 
void decaf_255_point_from_hash_uniform (
    decaf_255_point_t pt,
    const unsigned char hashed_data[2*DECAF_255_HASH_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;

/**
 * @brief Inverse of elligator-like hash to curve.
 *
 * This function writes to the buffer, to make it so that
 * decaf_255_point_from_hash_nonuniform(buffer) = pt if
 * possible.  Since there may be multiple preimages, the
 * "which" parameter chooses between them.  To ensure uniform
 * inverse sampling, this function succeeds or fails
 * independently for different "which" values.
 *
 * This function isn't guaranteed to find every possible
 * preimage, but it finds all except a small finite number.
 * In particular, when the number of bits in the modulus isn't
 * a multiple of 8 (i.e. for curve25519), it sets the high bits
 * independently, which enables the generated data to be uniform.
 * But it doesn't add p, so you'll never get exactly p from this
 * function.  This might change in the future, especially if
 * we ever support eg Brainpool curves, where this could cause
 * real nonuniformity.
 *
 * @param [out] recovered_hash Encoded data.
 * @param [in] pt The point to encode.
 * @param [in] which A value determining which inverse point
 * to return.
 *
 * @retval DECAF_SUCCESS The inverse succeeded.
 * @retval DECAF_FAILURE The inverse failed.
 */
decaf_error_t
decaf_255_invert_elligator_nonuniform (
    unsigned char recovered_hash[DECAF_255_HASH_BYTES],
    const decaf_255_point_t pt,
    uint32_t which
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_WARN_UNUSED;

/**
 * @brief Inverse of elligator-like hash to curve.
 *
 * This function writes to the buffer, to make it so that
 * decaf_255_point_from_hash_uniform(buffer) = pt if
 * possible.  Since there may be multiple preimages, the
 * "which" parameter chooses between them.  To ensure uniform
 * inverse sampling, this function succeeds or fails
 * independently for different "which" values.
 *
 * @param [out] recovered_hash Encoded data.
 * @param [in] pt The point to encode.
 * @param [in] which A value determining which inverse point
 * to return.
 *
 * @retval DECAF_SUCCESS The inverse succeeded.
 * @retval DECAF_FAILURE The inverse failed.
 */
decaf_error_t
decaf_255_invert_elligator_uniform (
    unsigned char recovered_hash[2*DECAF_255_HASH_BYTES],
    const decaf_255_point_t pt,
    uint32_t which
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_WARN_UNUSED;

/**
 * @brief Overwrite scalar with zeros.
 */
void decaf_255_scalar_destroy (
    decaf_255_scalar_t scalar
) DECAF_NONNULL DECAF_API_VIS;

/**
 * @brief Overwrite point with zeros.
 */
void decaf_255_point_destroy (
    decaf_255_point_t point
) DECAF_NONNULL DECAF_API_VIS;

/**
 * @brief Overwrite precomputed table with zeros.
 */
void decaf_255_precomputed_destroy (
    decaf_255_precomputed_s *pre
) DECAF_NONNULL DECAF_API_VIS;

#ifdef __cplusplus
} /* extern "C" */
#endif

#endif /* __DECAF_POINT_255_H__ */