summaryrefslogtreecommitdiffstats
path: root/crypto/ec/curve448/eddsa.c
blob: 7d9ef8e2212e5ea7ce752935e928048950b45d50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/*
 * Copyright 2017 The OpenSSL Project Authors. All Rights Reserved.
 * Copyright 2015-2016 Cryptography Research, Inc.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 *
 * Originally written by Mike Hamburg
 */
#include <openssl/crypto.h>
#include <openssl/evp.h>

#include "curve448_lcl.h"
#include "word.h"
#include "ed448.h"
#include <string.h>
#include "internal/numbers.h"

#define COFACTOR 4

static decaf_error_t oneshot_hash(uint8_t *out, size_t outlen,
                                  const uint8_t *in, size_t inlen)
{
    EVP_MD_CTX *hashctx = EVP_MD_CTX_new();

    if (hashctx == NULL)
        return DECAF_FAILURE;

    if (!EVP_DigestInit_ex(hashctx, EVP_shake256(), NULL)
        || !EVP_DigestUpdate(hashctx, in, inlen)
        || !EVP_DigestFinalXOF(hashctx, out, outlen)) {
        EVP_MD_CTX_free(hashctx);
        return DECAF_FAILURE;
    }

    EVP_MD_CTX_free(hashctx);
    return DECAF_SUCCESS;
}

static void clamp(uint8_t secret_scalar_ser[DECAF_EDDSA_448_PRIVATE_BYTES])
{
    uint8_t hibit = (1 << 0) >> 1;

    /* Blarg */
    secret_scalar_ser[0] &= -COFACTOR;
    if (hibit == 0) {
        secret_scalar_ser[DECAF_EDDSA_448_PRIVATE_BYTES - 1] = 0;
        secret_scalar_ser[DECAF_EDDSA_448_PRIVATE_BYTES - 2] |= 0x80;
    } else {
        secret_scalar_ser[DECAF_EDDSA_448_PRIVATE_BYTES - 1] &= hibit - 1;
        secret_scalar_ser[DECAF_EDDSA_448_PRIVATE_BYTES - 1] |= hibit;
    }
}

static decaf_error_t hash_init_with_dom(EVP_MD_CTX *hashctx,
                                        uint8_t prehashed,
                                        uint8_t for_prehash,
                                        const uint8_t *context,
                                        size_t context_len)
{
    const char *dom_s = "SigEd448";
    uint8_t dom[2];

    dom[0] = 2 + word_is_zero(prehashed) + word_is_zero(for_prehash);
    dom[1] = (uint8_t)context_len;

    if (context_len > UINT8_MAX)
        return DECAF_FAILURE;

    if (!EVP_DigestInit_ex(hashctx, EVP_shake256(), NULL)
        || !EVP_DigestUpdate(hashctx, dom_s, strlen(dom_s))
        || !EVP_DigestUpdate(hashctx, dom, sizeof(dom))
        || !EVP_DigestUpdate(hashctx, context, context_len))
        return DECAF_FAILURE;

    return DECAF_SUCCESS;
}

/* In this file because it uses the hash */
decaf_error_t decaf_ed448_convert_private_key_to_x448(
                            uint8_t x[DECAF_X448_PRIVATE_BYTES],
                            const uint8_t ed [DECAF_EDDSA_448_PRIVATE_BYTES])
{
    /* pass the private key through oneshot_hash function */
    /* and keep the first DECAF_X448_PRIVATE_BYTES bytes */
    return oneshot_hash(x,
                        DECAF_X448_PRIVATE_BYTES,
                        ed, DECAF_EDDSA_448_PRIVATE_BYTES);
}

decaf_error_t decaf_ed448_derive_public_key(
                        uint8_t pubkey[DECAF_EDDSA_448_PUBLIC_BYTES],
                        const uint8_t privkey[DECAF_EDDSA_448_PRIVATE_BYTES])
{
    /* only this much used for keygen */
    uint8_t secret_scalar_ser[DECAF_EDDSA_448_PRIVATE_BYTES];
    curve448_scalar_t secret_scalar;
    unsigned int c;
    curve448_point_t p;

    if (!oneshot_hash(secret_scalar_ser, sizeof(secret_scalar_ser), privkey,
                      DECAF_EDDSA_448_PRIVATE_BYTES))
        return DECAF_FAILURE;

    clamp(secret_scalar_ser);

    curve448_scalar_decode_long(secret_scalar, secret_scalar_ser,
                                sizeof(secret_scalar_ser));

    /*
     * Since we are going to mul_by_cofactor during encoding, divide by it
     * here. However, the EdDSA base point is not the same as the decaf base
     * point if the sigma isogeny is in use: the EdDSA base point is on
     * Etwist_d/(1-d) and the decaf base point is on Etwist_d, and when
     * converted it effectively picks up a factor of 2 from the isogenies.  So
     * we might start at 2 instead of 1.
     */
    for (c = 1; c < DECAF_448_EDDSA_ENCODE_RATIO; c <<= 1)
        curve448_scalar_halve(secret_scalar, secret_scalar);

    curve448_precomputed_scalarmul(p, curve448_precomputed_base, secret_scalar);

    curve448_point_mul_by_ratio_and_encode_like_eddsa(pubkey, p);

    /* Cleanup */
    curve448_scalar_destroy(secret_scalar);
    curve448_point_destroy(p);
    OPENSSL_cleanse(secret_scalar_ser, sizeof(secret_scalar_ser));

    return DECAF_SUCCESS;
}

decaf_error_t decaf_ed448_sign(
                        uint8_t signature[DECAF_EDDSA_448_SIGNATURE_BYTES],
                        const uint8_t privkey[DECAF_EDDSA_448_PRIVATE_BYTES],
                        const uint8_t pubkey[DECAF_EDDSA_448_PUBLIC_BYTES],
                        const uint8_t *message, size_t message_len,
                        uint8_t prehashed, const uint8_t *context,
                        size_t context_len)
{
    curve448_scalar_t secret_scalar;
    EVP_MD_CTX *hashctx = EVP_MD_CTX_new();
    decaf_error_t ret = DECAF_FAILURE;
    curve448_scalar_t nonce_scalar;
    uint8_t nonce_point[DECAF_EDDSA_448_PUBLIC_BYTES] = { 0 };
    unsigned int c;
    curve448_scalar_t challenge_scalar;

    if (hashctx == NULL)
        return DECAF_FAILURE;

    {
        /* Schedule the secret key */
        struct {
            uint8_t secret_scalar_ser[DECAF_EDDSA_448_PRIVATE_BYTES];
            uint8_t seed[DECAF_EDDSA_448_PRIVATE_BYTES];
        } __attribute__ ((packed)) expanded;

        if (!oneshot_hash((uint8_t *)&expanded, sizeof(expanded), privkey,
                          DECAF_EDDSA_448_PRIVATE_BYTES))
            goto err;
        clamp(expanded.secret_scalar_ser);
        curve448_scalar_decode_long(secret_scalar, expanded.secret_scalar_ser,
                                    sizeof(expanded.secret_scalar_ser));

        /* Hash to create the nonce */
        if (!hash_init_with_dom(hashctx, prehashed, 0, context, context_len)
            || !EVP_DigestUpdate(hashctx, expanded.seed, sizeof(expanded.seed))
            || !EVP_DigestUpdate(hashctx, message, message_len)) {
            OPENSSL_cleanse(&expanded, sizeof(expanded));
            goto err;
        }
        OPENSSL_cleanse(&expanded, sizeof(expanded));
    }

    /* Decode the nonce */
    {
        uint8_t nonce[2 * DECAF_EDDSA_448_PRIVATE_BYTES];

        if (!EVP_DigestFinalXOF(hashctx, nonce, sizeof(nonce)))
            goto err;
        curve448_scalar_decode_long(nonce_scalar, nonce, sizeof(nonce));
        OPENSSL_cleanse(nonce, sizeof(nonce));
    }

    {
        /* Scalarmul to create the nonce-point */
        curve448_scalar_t nonce_scalar_2;
        curve448_point_t p;

        curve448_scalar_halve(nonce_scalar_2, nonce_scalar);
        for (c = 2; c < DECAF_448_EDDSA_ENCODE_RATIO; c <<= 1) {
            curve448_scalar_halve(nonce_scalar_2, nonce_scalar_2);
        }

        curve448_precomputed_scalarmul(p, curve448_precomputed_base,
                                       nonce_scalar_2);
        curve448_point_mul_by_ratio_and_encode_like_eddsa(nonce_point, p);
        curve448_point_destroy(p);
        curve448_scalar_destroy(nonce_scalar_2);
    }

    {
        uint8_t challenge[2 * DECAF_EDDSA_448_PRIVATE_BYTES];

        /* Compute the challenge */
        if (!hash_init_with_dom(hashctx, prehashed, 0, context, context_len)
            || !EVP_DigestUpdate(hashctx, nonce_point, sizeof(nonce_point))
            || !EVP_DigestUpdate(hashctx, pubkey, DECAF_EDDSA_448_PUBLIC_BYTES)
            || !EVP_DigestUpdate(hashctx, message, message_len)
            || !EVP_DigestFinalXOF(hashctx, challenge, sizeof(challenge)))
            goto err;

        curve448_scalar_decode_long(challenge_scalar, challenge,
                                    sizeof(challenge));
        OPENSSL_cleanse(challenge, sizeof(challenge));
    }

    curve448_scalar_mul(challenge_scalar, challenge_scalar, secret_scalar);
    curve448_scalar_add(challenge_scalar, challenge_scalar, nonce_scalar);

    OPENSSL_cleanse(signature, DECAF_EDDSA_448_SIGNATURE_BYTES);
    memcpy(signature, nonce_point, sizeof(nonce_point));
    curve448_scalar_encode(&signature[DECAF_EDDSA_448_PUBLIC_BYTES],
                           challenge_scalar);

    curve448_scalar_destroy(secret_scalar);
    curve448_scalar_destroy(nonce_scalar);
    curve448_scalar_destroy(challenge_scalar);

    ret = DECAF_SUCCESS;
 err:
    EVP_MD_CTX_free(hashctx);
    return ret;
}

decaf_error_t decaf_ed448_sign_prehash(uint8_t
                                       signature
                                       [DECAF_EDDSA_448_SIGNATURE_BYTES],
                                       const uint8_t
                                       privkey[DECAF_EDDSA_448_PRIVATE_BYTES],
                                       const uint8_t
                                       pubkey[DECAF_EDDSA_448_PUBLIC_BYTES],
                                       const uint8_t hash[64],
                                       const uint8_t *context,
                                       size_t context_len)
{
    return decaf_ed448_sign(signature, privkey, pubkey, hash, 64, 1, context,
                            context_len);
}

decaf_error_t decaf_ed448_verify(const uint8_t
                                 signature[DECAF_EDDSA_448_SIGNATURE_BYTES],
                                 const uint8_t
                                 pubkey[DECAF_EDDSA_448_PUBLIC_BYTES],
                                 const uint8_t *message, size_t message_len,
                                 uint8_t prehashed, const uint8_t *context,
                                 uint8_t context_len)
{
    curve448_point_t pk_point, r_point;
    decaf_error_t error =
        curve448_point_decode_like_eddsa_and_mul_by_ratio(pk_point, pubkey);
    curve448_scalar_t challenge_scalar;
    curve448_scalar_t response_scalar;
    unsigned int c;

    if (DECAF_SUCCESS != error)
        return error;

    error =
        curve448_point_decode_like_eddsa_and_mul_by_ratio(r_point, signature);
    if (DECAF_SUCCESS != error)
        return error;

    {
        /* Compute the challenge */
        EVP_MD_CTX *hashctx = EVP_MD_CTX_new();
        uint8_t challenge[2 * DECAF_EDDSA_448_PRIVATE_BYTES];

        if (hashctx == NULL
            || !hash_init_with_dom(hashctx, prehashed, 0, context, context_len)
            || !EVP_DigestUpdate(hashctx, signature,
                                 DECAF_EDDSA_448_PUBLIC_BYTES)
            || !EVP_DigestUpdate(hashctx, pubkey, DECAF_EDDSA_448_PUBLIC_BYTES)
            || !EVP_DigestUpdate(hashctx, message, message_len)
            || !EVP_DigestFinalXOF(hashctx, challenge, sizeof(challenge))) {
            EVP_MD_CTX_free(hashctx);
            return DECAF_FAILURE;
        }

        EVP_MD_CTX_free(hashctx);
        curve448_scalar_decode_long(challenge_scalar, challenge,
                                    sizeof(challenge));
        OPENSSL_cleanse(challenge, sizeof(challenge));
    }
    curve448_scalar_sub(challenge_scalar, curve448_scalar_zero,
                        challenge_scalar);

    curve448_scalar_decode_long(response_scalar,
                                &signature[DECAF_EDDSA_448_PUBLIC_BYTES],
                                DECAF_EDDSA_448_PRIVATE_BYTES);

    for (c = 1; c < DECAF_448_EDDSA_DECODE_RATIO; c <<= 1)
        curve448_scalar_add(response_scalar, response_scalar, response_scalar);

    /* pk_point = -c(x(P)) + (cx + k)G = kG */
    curve448_base_double_scalarmul_non_secret(pk_point,
                                              response_scalar,
                                              pk_point, challenge_scalar);
    return decaf_succeed_if(curve448_point_eq(pk_point, r_point));
}

decaf_error_t decaf_ed448_verify_prehash(
                    const uint8_t signature[DECAF_EDDSA_448_SIGNATURE_BYTES],
                    const uint8_t pubkey[DECAF_EDDSA_448_PUBLIC_BYTES],
                    const uint8_t hash[64], const uint8_t *context,
                    uint8_t context_len)
{
    decaf_error_t ret;

    ret = decaf_ed448_verify(signature, pubkey, hash, 64, 1, context,
                             context_len);

    return ret;
}

int ED448_sign(uint8_t *out_sig, const uint8_t *message, size_t message_len,
               const uint8_t public_key[57], const uint8_t private_key[57],
               const uint8_t *context, size_t context_len)
{

    return decaf_ed448_sign(out_sig, private_key, public_key, message,
                            message_len, 0, context, context_len)
        == DECAF_SUCCESS;
}

int ED448_verify(const uint8_t *message, size_t message_len,
                 const uint8_t signature[114], const uint8_t public_key[57],
                 const uint8_t *context, size_t context_len)
{
    return decaf_ed448_verify(signature, public_key, message, message_len, 0,
                              context, context_len) == DECAF_SUCCESS;
}

int ED448ph_sign(uint8_t *out_sig, const uint8_t hash[64],
                 const uint8_t public_key[57], const uint8_t private_key[57],
                 const uint8_t *context, size_t context_len)
{
    return decaf_ed448_sign_prehash(out_sig, private_key, public_key, hash,
                                    context, context_len) == DECAF_SUCCESS;

}

int ED448ph_verify(const uint8_t hash[64], const uint8_t signature[114],
                   const uint8_t public_key[57], const uint8_t *context,
                   size_t context_len)
{
    return decaf_ed448_verify_prehash(signature, public_key, hash, context,
                                      context_len) == DECAF_SUCCESS;
}

int ED448_public_from_private(uint8_t out_public_key[57],
                              const uint8_t private_key[57])
{
    return decaf_ed448_derive_public_key(out_public_key, private_key)
        == DECAF_SUCCESS;
}