summaryrefslogtreecommitdiffstats
path: root/crypto/ec/ecp_nistp224.c
blob: d2d225c75e604783d86de20a3a58c12d05068d91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
/* crypto/ec/ecp_nistp224.c */
/*
 * Written by Emilia Kasper (Google) for the OpenSSL project.
 */
/* Copyright 2011 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 *
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

/*
 * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
 *
 * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
 * and Adam Langley's public domain 64-bit C implementation of curve25519
 */

#include <openssl/opensslconf.h>
#ifndef OPENSSL_NO_EC_NISTP_64_GCC_128

#include <stdint.h>
#include <string.h>
#include <openssl/err.h>
#include "ec_lcl.h"

#if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
  /* even with gcc, the typedef won't work for 32-bit platforms */
  typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */
#else
  #error "Need GCC 3.1 or later to define type uint128_t"
#endif

typedef uint8_t u8;
typedef uint64_t u64;
typedef int64_t s64;


/******************************************************************************/
/*-
 * INTERNAL REPRESENTATION OF FIELD ELEMENTS
 *
 * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
 * using 64-bit coefficients called 'limbs',
 * and sometimes (for multiplication results) as
 * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
 * using 128-bit coefficients called 'widelimbs'.
 * A 4-limb representation is an 'felem';
 * a 7-widelimb representation is a 'widefelem'.
 * Even within felems, bits of adjacent limbs overlap, and we don't always
 * reduce the representations: we ensure that inputs to each felem
 * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
 * and fit into a 128-bit word without overflow. The coefficients are then
 * again partially reduced to obtain an felem satisfying a_i < 2^57.
 * We only reduce to the unique minimal representation at the end of the
 * computation.
 */

typedef uint64_t limb;
typedef uint128_t widelimb;

typedef limb felem[4];
typedef widelimb widefelem[7];

/* Field element represented as a byte arrary.
 * 28*8 = 224 bits is also the group order size for the elliptic curve,
 * and we also use this type for scalars for point multiplication.
  */
typedef u8 felem_bytearray[28];

static const felem_bytearray nistp224_curve_params[5] = {
	{0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,    /* p */
	 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00,
	 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01},
	{0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,    /* a */
	 0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFF,0xFF,
	 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE},
	{0xB4,0x05,0x0A,0x85,0x0C,0x04,0xB3,0xAB,0xF5,0x41,    /* b */
	 0x32,0x56,0x50,0x44,0xB0,0xB7,0xD7,0xBF,0xD8,0xBA,
	 0x27,0x0B,0x39,0x43,0x23,0x55,0xFF,0xB4},
	{0xB7,0x0E,0x0C,0xBD,0x6B,0xB4,0xBF,0x7F,0x32,0x13,    /* x */
	 0x90,0xB9,0x4A,0x03,0xC1,0xD3,0x56,0xC2,0x11,0x22,
	 0x34,0x32,0x80,0xD6,0x11,0x5C,0x1D,0x21},
	{0xbd,0x37,0x63,0x88,0xb5,0xf7,0x23,0xfb,0x4c,0x22,    /* y */
	 0xdf,0xe6,0xcd,0x43,0x75,0xa0,0x5a,0x07,0x47,0x64,
	 0x44,0xd5,0x81,0x99,0x85,0x00,0x7e,0x34}
};

/*-
 * Precomputed multiples of the standard generator
 * Points are given in coordinates (X, Y, Z) where Z normally is 1
 * (0 for the point at infinity).
 * For each field element, slice a_0 is word 0, etc.
 *
 * The table has 2 * 16 elements, starting with the following:
 * index | bits    | point
 * ------+---------+------------------------------
 *     0 | 0 0 0 0 | 0G
 *     1 | 0 0 0 1 | 1G
 *     2 | 0 0 1 0 | 2^56G
 *     3 | 0 0 1 1 | (2^56 + 1)G
 *     4 | 0 1 0 0 | 2^112G
 *     5 | 0 1 0 1 | (2^112 + 1)G
 *     6 | 0 1 1 0 | (2^112 + 2^56)G
 *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
 *     8 | 1 0 0 0 | 2^168G
 *     9 | 1 0 0 1 | (2^168 + 1)G
 *    10 | 1 0 1 0 | (2^168 + 2^56)G
 *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
 *    12 | 1 1 0 0 | (2^168 + 2^112)G
 *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
 *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
 *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
 * followed by a copy of this with each element multiplied by 2^28.
 *
 * The reason for this is so that we can clock bits into four different
 * locations when doing simple scalar multiplies against the base point,
 * and then another four locations using the second 16 elements.
 */
static const felem gmul[2][16][3] =
{{{{0, 0, 0, 0},
   {0, 0, 0, 0},
   {0, 0, 0, 0}},
  {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
   {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
   {1, 0, 0, 0}},
  {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
   {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
   {1, 0, 0, 0}},
  {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
   {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
   {1, 0, 0, 0}},
  {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
   {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
   {1, 0, 0, 0}},
  {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
   {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
   {1, 0, 0, 0}},
  {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
   {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
   {1, 0, 0, 0}},
  {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
   {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
   {1, 0, 0, 0}},
  {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
   {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
   {1, 0, 0, 0}},
  {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
   {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
   {1, 0, 0, 0}},
  {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
   {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
   {1, 0, 0, 0}},
  {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
   {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
   {1, 0, 0, 0}},
  {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
   {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
   {1, 0, 0, 0}},
  {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
   {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
   {1, 0, 0, 0}},
  {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
   {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
   {1, 0, 0, 0}},
  {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
   {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
   {1, 0, 0, 0}}},
 {{{0, 0, 0, 0},
   {0, 0, 0, 0},
   {0, 0, 0, 0}},
  {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
   {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
   {1, 0, 0, 0}},
  {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
   {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
   {1, 0, 0, 0}},
  {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
   {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
   {1, 0, 0, 0}},
  {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
   {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
   {1, 0, 0, 0}},
  {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
   {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
   {1, 0, 0, 0}},
  {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
   {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
   {1, 0, 0, 0}},
  {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
   {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
   {1, 0, 0, 0}},
  {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
   {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
   {1, 0, 0, 0}},
  {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
   {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
   {1, 0, 0, 0}},
  {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
   {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
   {1, 0, 0, 0}},
  {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
   {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
   {1, 0, 0, 0}},
  {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
   {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
   {1, 0, 0, 0}},
  {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
   {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
   {1, 0, 0, 0}},
  {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
   {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
   {1, 0, 0, 0}},
  {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
   {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
   {1, 0, 0, 0}}}};

/* Precomputation for the group generator. */
typedef struct {
	felem g_pre_comp[2][16][3];
	int references;
} NISTP224_PRE_COMP;

const EC_METHOD *EC_GFp_nistp224_method(void)
	{
	static const EC_METHOD ret = {
		EC_FLAGS_DEFAULT_OCT,
		NID_X9_62_prime_field,
		ec_GFp_nistp224_group_init,
		ec_GFp_simple_group_finish,
		ec_GFp_simple_group_clear_finish,
		ec_GFp_nist_group_copy,
		ec_GFp_nistp224_group_set_curve,
		ec_GFp_simple_group_get_curve,
		ec_GFp_simple_group_get_degree,
		ec_GFp_simple_group_check_discriminant,
		ec_GFp_simple_point_init,
		ec_GFp_simple_point_finish,
		ec_GFp_simple_point_clear_finish,
		ec_GFp_simple_point_copy,
		ec_GFp_simple_point_set_to_infinity,
		ec_GFp_simple_set_Jprojective_coordinates_GFp,
		ec_GFp_simple_get_Jprojective_coordinates_GFp,
		ec_GFp_simple_point_set_affine_coordinates,
		ec_GFp_nistp224_point_get_affine_coordinates,
		0 /* point_set_compressed_coordinates */,
		0 /* point2oct */,
		0 /* oct2point */,
		ec_GFp_simple_add,
		ec_GFp_simple_dbl,
		ec_GFp_simple_invert,
		ec_GFp_simple_is_at_infinity,
		ec_GFp_simple_is_on_curve,
		ec_GFp_simple_cmp,
		ec_GFp_simple_make_affine,
		ec_GFp_simple_points_make_affine,
		ec_GFp_nistp224_points_mul,
		ec_GFp_nistp224_precompute_mult,
		ec_GFp_nistp224_have_precompute_mult,
		ec_GFp_nist_field_mul,
		ec_GFp_nist_field_sqr,
		0 /* field_div */,
		0 /* field_encode */,
		0 /* field_decode */,
		0 /* field_set_to_one */ };

	return &ret;
	}

/* Helper functions to convert field elements to/from internal representation */
static void bin28_to_felem(felem out, const u8 in[28])
	{
	out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
	out[1] = (*((const uint64_t *)(in+7))) & 0x00ffffffffffffff;
	out[2] = (*((const uint64_t *)(in+14))) & 0x00ffffffffffffff;
	out[3] = (*((const uint64_t *)(in+21))) & 0x00ffffffffffffff;
	}

static void felem_to_bin28(u8 out[28], const felem in)
	{
	unsigned i;
	for (i = 0; i < 7; ++i)
		{
		out[i]	  = in[0]>>(8*i);
		out[i+7]  = in[1]>>(8*i);
		out[i+14] = in[2]>>(8*i);
		out[i+21] = in[3]>>(8*i);
		}
	}

/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
static void flip_endian(u8 *out, const u8 *in, unsigned len)
	{
	unsigned i;
	for (i = 0; i < len; ++i)
		out[i] = in[len-1-i];
	}

/* From OpenSSL BIGNUM to internal representation */
static int BN_to_felem(felem out, const BIGNUM *bn)
	{
	felem_bytearray b_in;
	felem_bytearray b_out;
	unsigned num_bytes;

	/* BN_bn2bin eats leading zeroes */
	memset(b_out, 0, sizeof b_out);
	num_bytes = BN_num_bytes(bn);
	if (num_bytes > sizeof b_out)
		{
		ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
		return 0;
		}
	if (BN_is_negative(bn))
		{
		ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
		return 0;
		}
	num_bytes = BN_bn2bin(bn, b_in);
	flip_endian(b_out, b_in, num_bytes);
	bin28_to_felem(out, b_out);
	return 1;
	}

/* From internal representation to OpenSSL BIGNUM */
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
	{
	felem_bytearray b_in, b_out;
	felem_to_bin28(b_in, in);
	flip_endian(b_out, b_in, sizeof b_out);
	return BN_bin2bn(b_out, sizeof b_out, out);
	}

/******************************************************************************/
/*-
 *				FIELD OPERATIONS
 *
 * Field operations, using the internal representation of field elements.
 * NB! These operations are specific to our point multiplication and cannot be
 * expected to be correct in general - e.g., multiplication with a large scalar
 * will cause an overflow.
 *
 */

static void felem_one(felem out)
	{
	out[0] = 1;
	out[1] = 0;
	out[2] = 0;
	out[3] = 0;
	}

static void felem_assign(felem out, const felem in)
	{
	out[0] = in[0];
	out[1] = in[1];
	out[2] = in[2];
	out[3] = in[3];
	}

/* Sum two field elements: out += in */
static void felem_sum(felem out, const felem in)
	{
	out[0] += in[0];
	out[1] += in[1];
	out[2] += in[2];
	out[3] += in[3];
	}

/* Get negative value: out = -in */
/* Assumes in[i] < 2^57 */
static void felem_neg(felem out, const felem in)
	{
	static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
	static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
	static const limb two58m42m2 = (((limb) 1) << 58) -
	    (((limb) 1) << 42) - (((limb) 1) << 2);

	/* Set to 0 mod 2^224-2^96+1 to ensure out > in */
	out[0] = two58p2 - in[0];
	out[1] = two58m42m2 - in[1];
	out[2] = two58m2 - in[2];
	out[3] = two58m2 - in[3];
	}

/* Subtract field elements: out -= in */
/* Assumes in[i] < 2^57 */
static void felem_diff(felem out, const felem in)
	{
	static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
	static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
	static const limb two58m42m2 = (((limb) 1) << 58) -
	    (((limb) 1) << 42) - (((limb) 1) << 2);

	/* Add 0 mod 2^224-2^96+1 to ensure out > in */
	out[0] += two58p2;
	out[1] += two58m42m2;
	out[2] += two58m2;
	out[3] += two58m2;

	out[0] -= in[0];
	out[1] -= in[1];
	out[2] -= in[2];
	out[3] -= in[3];
	}

/* Subtract in unreduced 128-bit mode: out -= in */
/* Assumes in[i] < 2^119 */
static void widefelem_diff(widefelem out, const widefelem in)
	{
	static const widelimb two120 = ((widelimb) 1) << 120;
	static const widelimb two120m64 = (((widelimb) 1) << 120) -
		(((widelimb) 1) << 64);
	static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
		(((widelimb) 1) << 104) - (((widelimb) 1) << 64);

	/* Add 0 mod 2^224-2^96+1 to ensure out > in */
	out[0] += two120;
	out[1] += two120m64;
	out[2] += two120m64;
	out[3] += two120;
	out[4] += two120m104m64;
	out[5] += two120m64;
	out[6] += two120m64;

	out[0] -= in[0];
	out[1] -= in[1];
	out[2] -= in[2];
	out[3] -= in[3];
	out[4] -= in[4];
	out[5] -= in[5];
	out[6] -= in[6];
	}

/* Subtract in mixed mode: out128 -= in64 */
/* in[i] < 2^63 */
static void felem_diff_128_64(widefelem out, const felem in)
	{
	static const widelimb two64p8 = (((widelimb) 1) << 64) +
		(((widelimb) 1) << 8);
	static const widelimb two64m8 = (((widelimb) 1) << 64) -
		(((widelimb) 1) << 8);
	static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
		(((widelimb) 1) << 48) - (((widelimb) 1) << 8);

	/* Add 0 mod 2^224-2^96+1 to ensure out > in */
	out[0] += two64p8;
	out[1] += two64m48m8;
	out[2] += two64m8;
	out[3] += two64m8;

	out[0] -= in[0];
	out[1] -= in[1];
	out[2] -= in[2];
	out[3] -= in[3];
	}

/* Multiply a field element by a scalar: out = out * scalar
 * The scalars we actually use are small, so results fit without overflow */
static void felem_scalar(felem out, const limb scalar)
	{
	out[0] *= scalar;
	out[1] *= scalar;
	out[2] *= scalar;
	out[3] *= scalar;
	}

/* Multiply an unreduced field element by a scalar: out = out * scalar
 * The scalars we actually use are small, so results fit without overflow */
static void widefelem_scalar(widefelem out, const widelimb scalar)
	{
	out[0] *= scalar;
	out[1] *= scalar;
	out[2] *= scalar;
	out[3] *= scalar;
	out[4] *= scalar;
	out[5] *= scalar;
	out[6] *= scalar;
	}

/* Square a field element: out = in^2 */
static void felem_square(widefelem out, const felem in)
	{
	limb tmp0, tmp1, tmp2;
	tmp0 = 2 * in[0]; tmp1 = 2 * in[1]; tmp2 = 2 * in[2];
	out[0] = ((widelimb) in[0]) * in[0];
	out[1] = ((widelimb) in[0]) * tmp1;
	out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
	out[3] = ((widelimb) in[3]) * tmp0 +
		((widelimb) in[1]) * tmp2;
	out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
	out[5] = ((widelimb) in[3]) * tmp2;
	out[6] = ((widelimb) in[3]) * in[3];
	}

/* Multiply two field elements: out = in1 * in2 */
static void felem_mul(widefelem out, const felem in1, const felem in2)
	{
	out[0] = ((widelimb) in1[0]) * in2[0];
	out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
	out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
		((widelimb) in1[2]) * in2[0];
	out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
		((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
	out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
		((widelimb) in1[3]) * in2[1];
	out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
	out[6] = ((widelimb) in1[3]) * in2[3];
	}

/*-
 * Reduce seven 128-bit coefficients to four 64-bit coefficients.
 * Requires in[i] < 2^126,
 * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
static void felem_reduce(felem out, const widefelem in)
	{
	static const widelimb two127p15 = (((widelimb) 1) << 127) +
		(((widelimb) 1) << 15);
	static const widelimb two127m71 = (((widelimb) 1) << 127) -
		(((widelimb) 1) << 71);
	static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
		(((widelimb) 1) << 71) - (((widelimb) 1) << 55);
	widelimb output[5];

	/* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
	output[0] = in[0] + two127p15;
	output[1] = in[1] + two127m71m55;
	output[2] = in[2] + two127m71;
	output[3] = in[3];
	output[4] = in[4];

	/* Eliminate in[4], in[5], in[6] */
	output[4] += in[6] >> 16;
	output[3] += (in[6] & 0xffff) << 40;
	output[2] -= in[6];

	output[3] += in[5] >> 16;
	output[2] += (in[5] & 0xffff) << 40;
	output[1] -= in[5];

	output[2] += output[4] >> 16;
	output[1] += (output[4] & 0xffff) << 40;
	output[0] -= output[4];

	/* Carry 2 -> 3 -> 4 */
	output[3] += output[2] >> 56;
	output[2] &= 0x00ffffffffffffff;

	output[4] = output[3] >> 56;
	output[3] &= 0x00ffffffffffffff;

	/* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */

	/* Eliminate output[4] */
	output[2] += output[4] >> 16;
	/* output[2] < 2^56 + 2^56 = 2^57 */
	output[1] += (output[4] & 0xffff) << 40;
	output[0] -= output[4];

	/* Carry 0 -> 1 -> 2 -> 3 */
	output[1] += output[0] >> 56;
	out[0] = output[0] & 0x00ffffffffffffff;

	output[2] += output[1] >> 56;
	/* output[2] < 2^57 + 2^72 */
	out[1] = output[1] & 0x00ffffffffffffff;
	output[3] += output[2] >> 56;
	/* output[3] <= 2^56 + 2^16 */
	out[2] = output[2] & 0x00ffffffffffffff;

	/*-
	 * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
	 * out[3] <= 2^56 + 2^16 (due to final carry),
	 * so out < 2*p 
	 */
	out[3] = output[3];
	}

static void felem_square_reduce(felem out, const felem in)
	{
	widefelem tmp;
	felem_square(tmp, in);
	felem_reduce(out, tmp);
	}

static void felem_mul_reduce(felem out, const felem in1, const felem in2)
	{
	widefelem tmp;
	felem_mul(tmp, in1, in2);
	felem_reduce(out, tmp);
	}

/* Reduce to unique minimal representation.
 * Requires 0 <= in < 2*p (always call felem_reduce first) */
static void felem_contract(felem out, const felem in)
	{
	static const int64_t two56 = ((limb) 1) << 56;
	/* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
	/* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
	int64_t tmp[4], a;
	tmp[0] = in[0];
	tmp[1] = in[1];
	tmp[2] = in[2];
	tmp[3] = in[3];
	/* Case 1: a = 1 iff in >= 2^224 */
	a = (in[3] >> 56);
	tmp[0] -= a;
	tmp[1] += a << 40;
	tmp[3] &= 0x00ffffffffffffff;
	/* Case 2: a = 0 iff p <= in < 2^224, i.e.,
	 * the high 128 bits are all 1 and the lower part is non-zero */
	a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
		(((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
	a &= 0x00ffffffffffffff;
	/* turn a into an all-one mask (if a = 0) or an all-zero mask */
	a = (a - 1) >> 63;
	/* subtract 2^224 - 2^96 + 1 if a is all-one*/
	tmp[3] &= a ^ 0xffffffffffffffff;
	tmp[2] &= a ^ 0xffffffffffffffff;
	tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
	tmp[0] -= 1 & a;

	/* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
	 * be non-zero, so we only need one step */
	a = tmp[0] >> 63;
	tmp[0] += two56 & a;
	tmp[1] -= 1 & a;

	/* carry 1 -> 2 -> 3 */
	tmp[2] += tmp[1] >> 56;
	tmp[1] &= 0x00ffffffffffffff;

	tmp[3] += tmp[2] >> 56;
	tmp[2] &= 0x00ffffffffffffff;

	/* Now 0 <= out < p */
	out[0] = tmp[0];
	out[1] = tmp[1];
	out[2] = tmp[2];
	out[3] = tmp[3];
	}

/* Zero-check: returns 1 if input is 0, and 0 otherwise.
 * We know that field elements are reduced to in < 2^225,
 * so we only need to check three cases: 0, 2^224 - 2^96 + 1,
 * and 2^225 - 2^97 + 2 */
static limb felem_is_zero(const felem in)
	{
	limb zero, two224m96p1, two225m97p2;

	zero = in[0] | in[1] | in[2] | in[3];
	zero = (((int64_t)(zero) - 1) >> 63) & 1;
	two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
		| (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
	two224m96p1 = (((int64_t)(two224m96p1) - 1) >> 63) & 1;
	two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
		| (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
	two225m97p2 = (((int64_t)(two225m97p2) - 1) >> 63) & 1;
	return (zero | two224m96p1 | two225m97p2);
	}

static limb felem_is_zero_int(const felem in)
	{
	return (int) (felem_is_zero(in) & ((limb)1));
	}

/* Invert a field element */
/* Computation chain copied from djb's code */
static void felem_inv(felem out, const felem in)
	{
	felem ftmp, ftmp2, ftmp3, ftmp4;
	widefelem tmp;
	unsigned i;

	felem_square(tmp, in); felem_reduce(ftmp, tmp);		/* 2 */
	felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);	/* 2^2 - 1 */
	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);	/* 2^3 - 2 */
	felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);	/* 2^3 - 1 */
	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^4 - 2 */
	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^5 - 4 */
	felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);	/* 2^6 - 8 */
	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);	/* 2^6 - 1 */
	felem_square(tmp, ftmp); felem_reduce(ftmp2, tmp);	/* 2^7 - 2 */
	for (i = 0; i < 5; ++i)					/* 2^12 - 2^6 */
		{
		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
		}
	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp2, tmp);	/* 2^12 - 1 */
	felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^13 - 2 */
	for (i = 0; i < 11; ++i)				/* 2^24 - 2^12 */
		{
		felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
		}
	felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
	felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^25 - 2 */
	for (i = 0; i < 23; ++i)				/* 2^48 - 2^24 */
		{
		felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);
		}
	felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
	felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp);	/* 2^49 - 2 */
	for (i = 0; i < 47; ++i)				/* 2^96 - 2^48 */
		{
		felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
		}
	felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
	felem_square(tmp, ftmp3); felem_reduce(ftmp4, tmp);	/* 2^97 - 2 */
	for (i = 0; i < 23; ++i)				/* 2^120 - 2^24 */
		{
		felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);
		}
	felem_mul(tmp, ftmp2, ftmp4); felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
	for (i = 0; i < 6; ++i)					/* 2^126 - 2^6 */
		{
		felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp);
		}
	felem_mul(tmp, ftmp2, ftmp); felem_reduce(ftmp, tmp);	/* 2^126 - 1 */
	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);	/* 2^127 - 2 */
	felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp);	/* 2^127 - 1 */
	for (i = 0; i < 97; ++i)				/* 2^224 - 2^97 */
		{
		felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);
		}
	felem_mul(tmp, ftmp, ftmp3); felem_reduce(out, tmp);	/* 2^224 - 2^96 - 1 */
	}

/* Copy in constant time:
 * if icopy == 1, copy in to out,
 * if icopy == 0, copy out to itself. */
static void
copy_conditional(felem out, const felem in, limb icopy)
	{
	unsigned i;
	/* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
	const limb copy = -icopy;
	for (i = 0; i < 4; ++i)
		{
		const limb tmp = copy & (in[i] ^ out[i]);
		out[i] ^= tmp;
		}
	}

/******************************************************************************/
/*-
 *			 ELLIPTIC CURVE POINT OPERATIONS
 *
 * Points are represented in Jacobian projective coordinates:
 * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
 * or to the point at infinity if Z == 0.
 *
 */

/*-
 * Double an elliptic curve point:
 * (X', Y', Z') = 2 * (X, Y, Z), where
 * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
 * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
 * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
 * while x_out == y_in is not (maybe this works, but it's not tested). 
 */
static void
point_double(felem x_out, felem y_out, felem z_out,
             const felem x_in, const felem y_in, const felem z_in)
	{
	widefelem tmp, tmp2;
	felem delta, gamma, beta, alpha, ftmp, ftmp2;

	felem_assign(ftmp, x_in);
	felem_assign(ftmp2, x_in);

	/* delta = z^2 */
	felem_square(tmp, z_in);
	felem_reduce(delta, tmp);

	/* gamma = y^2 */
	felem_square(tmp, y_in);
	felem_reduce(gamma, tmp);

	/* beta = x*gamma */
	felem_mul(tmp, x_in, gamma);
	felem_reduce(beta, tmp);

	/* alpha = 3*(x-delta)*(x+delta) */
	felem_diff(ftmp, delta);
	/* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
	felem_sum(ftmp2, delta);
	/* ftmp2[i] < 2^57 + 2^57 = 2^58 */
	felem_scalar(ftmp2, 3);
	/* ftmp2[i] < 3 * 2^58 < 2^60 */
	felem_mul(tmp, ftmp, ftmp2);
	/* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
	felem_reduce(alpha, tmp);

	/* x' = alpha^2 - 8*beta */
	felem_square(tmp, alpha);
	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
	felem_assign(ftmp, beta);
	felem_scalar(ftmp, 8);
	/* ftmp[i] < 8 * 2^57 = 2^60 */
	felem_diff_128_64(tmp, ftmp);
	/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
	felem_reduce(x_out, tmp);

	/* z' = (y + z)^2 - gamma - delta */
	felem_sum(delta, gamma);
	/* delta[i] < 2^57 + 2^57 = 2^58 */
	felem_assign(ftmp, y_in);
	felem_sum(ftmp, z_in);
	/* ftmp[i] < 2^57 + 2^57 = 2^58 */
	felem_square(tmp, ftmp);
	/* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
	felem_diff_128_64(tmp, delta);
	/* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
	felem_reduce(z_out, tmp);

	/* y' = alpha*(4*beta - x') - 8*gamma^2 */
	felem_scalar(beta, 4);
	/* beta[i] < 4 * 2^57 = 2^59 */
	felem_diff(beta, x_out);
	/* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
	felem_mul(tmp, alpha, beta);
	/* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
	felem_square(tmp2, gamma);
	/* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
	widefelem_scalar(tmp2, 8);
	/* tmp2[i] < 8 * 2^116 = 2^119 */
	widefelem_diff(tmp, tmp2);
	/* tmp[i] < 2^119 + 2^120 < 2^121 */
	felem_reduce(y_out, tmp);
	}

/*-
 * Add two elliptic curve points:
 * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
 * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
 * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
 * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
 *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
 * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
 *
 * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
 */

/* This function is not entirely constant-time:
 * it includes a branch for checking whether the two input points are equal,
 * (while not equal to the point at infinity).
 * This case never happens during single point multiplication,
 * so there is no timing leak for ECDH or ECDSA signing. */
static void point_add(felem x3, felem y3, felem z3,
	const felem x1, const felem y1, const felem z1,
	const int mixed, const felem x2, const felem y2, const felem z2)
	{
	felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
	widefelem tmp, tmp2;
	limb z1_is_zero, z2_is_zero, x_equal, y_equal;

	if (!mixed)
		{
		/* ftmp2 = z2^2 */
		felem_square(tmp, z2);
		felem_reduce(ftmp2, tmp);

		/* ftmp4 = z2^3 */
		felem_mul(tmp, ftmp2, z2);
		felem_reduce(ftmp4, tmp);

		/* ftmp4 = z2^3*y1 */
		felem_mul(tmp2, ftmp4, y1);
		felem_reduce(ftmp4, tmp2);

		/* ftmp2 = z2^2*x1 */
		felem_mul(tmp2, ftmp2, x1);
		felem_reduce(ftmp2, tmp2);
		}
	else
		{
		/* We'll assume z2 = 1 (special case z2 = 0 is handled later) */

		/* ftmp4 = z2^3*y1 */
		felem_assign(ftmp4, y1);

		/* ftmp2 = z2^2*x1 */
		felem_assign(ftmp2, x1);
		}

	/* ftmp = z1^2 */
	felem_square(tmp, z1);
	felem_reduce(ftmp, tmp);

	/* ftmp3 = z1^3 */
	felem_mul(tmp, ftmp, z1);
	felem_reduce(ftmp3, tmp);

	/* tmp = z1^3*y2 */
	felem_mul(tmp, ftmp3, y2);
	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */

	/* ftmp3 = z1^3*y2 - z2^3*y1 */
	felem_diff_128_64(tmp, ftmp4);
	/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
	felem_reduce(ftmp3, tmp);

	/* tmp = z1^2*x2 */
	felem_mul(tmp, ftmp, x2);
	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */

	/* ftmp = z1^2*x2 - z2^2*x1 */
	felem_diff_128_64(tmp, ftmp2);
	/* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
	felem_reduce(ftmp, tmp);

	/* the formulae are incorrect if the points are equal
	 * so we check for this and do doubling if this happens */
	x_equal = felem_is_zero(ftmp);
	y_equal = felem_is_zero(ftmp3);
	z1_is_zero = felem_is_zero(z1);
	z2_is_zero = felem_is_zero(z2);
	/* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
	if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
		{
		point_double(x3, y3, z3, x1, y1, z1);
		return;
		}

	/* ftmp5 = z1*z2 */
	if (!mixed)
		{
		felem_mul(tmp, z1, z2);
		felem_reduce(ftmp5, tmp);
		}
	else
		{
		/* special case z2 = 0 is handled later */
		felem_assign(ftmp5, z1);
		}

	/* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
	felem_mul(tmp, ftmp, ftmp5);
	felem_reduce(z_out, tmp);

	/* ftmp = (z1^2*x2 - z2^2*x1)^2 */
	felem_assign(ftmp5, ftmp);
	felem_square(tmp, ftmp);
	felem_reduce(ftmp, tmp);

	/* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
	felem_mul(tmp, ftmp, ftmp5);
	felem_reduce(ftmp5, tmp);

	/* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
	felem_mul(tmp, ftmp2, ftmp);
	felem_reduce(ftmp2, tmp);

	/* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
	felem_mul(tmp, ftmp4, ftmp5);
	/* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */

	/* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
	felem_square(tmp2, ftmp3);
	/* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */

	/* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
	felem_diff_128_64(tmp2, ftmp5);
	/* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */

	/* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
	felem_assign(ftmp5, ftmp2);
	felem_scalar(ftmp5, 2);
	/* ftmp5[i] < 2 * 2^57 = 2^58 */

	/*-
	 * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
	 *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 
	 */
	felem_diff_128_64(tmp2, ftmp5);
	/* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
	felem_reduce(x_out, tmp2);

	/* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
	felem_diff(ftmp2, x_out);
	/* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */

	/* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
	felem_mul(tmp2, ftmp3, ftmp2);
	/* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */

	/*-
	 * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
	 *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3 
	 */
	widefelem_diff(tmp2, tmp);
	/* tmp2[i] < 2^118 + 2^120 < 2^121 */
	felem_reduce(y_out, tmp2);

	/* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
	 * the point at infinity, so we need to check for this separately */

	/* if point 1 is at infinity, copy point 2 to output, and vice versa */
	copy_conditional(x_out, x2, z1_is_zero);
	copy_conditional(x_out, x1, z2_is_zero);
	copy_conditional(y_out, y2, z1_is_zero);
	copy_conditional(y_out, y1, z2_is_zero);
	copy_conditional(z_out, z2, z1_is_zero);
	copy_conditional(z_out, z1, z2_is_zero);
	felem_assign(x3, x_out);
	felem_assign(y3, y_out);
	felem_assign(z3, z_out);
	}

/*
 * select_point selects the |idx|th point from a precomputation table and
 * copies it to out.
 * The pre_comp array argument should be size of |size| argument
 */
static void select_point(const u64 idx, unsigned int size, const felem pre_comp[][3], felem out[3])
	{
	unsigned i, j;
	limb *outlimbs = &out[0][0];
	memset(outlimbs, 0, 3 * sizeof(felem));

	for (i = 0; i < size; i++)
		{
		const limb *inlimbs = &pre_comp[i][0][0];
		u64 mask = i ^ idx;
		mask |= mask >> 4;
		mask |= mask >> 2;
		mask |= mask >> 1;
		mask &= 1;
		mask--;
		for (j = 0; j < 4 * 3; j++)
			outlimbs[j] |= inlimbs[j] & mask;
		}
	}

/* get_bit returns the |i|th bit in |in| */
static char get_bit(const felem_bytearray in, unsigned i)
	{
	if (i >= 224)
		return 0;
	return (in[i >> 3] >> (i & 7)) & 1;
	}

/* Interleaved point multiplication using precomputed point multiples:
 * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
 * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
 * of the generator, using certain (large) precomputed multiples in g_pre_comp.
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
static void batch_mul(felem x_out, felem y_out, felem z_out,
	const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
	const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[2][16][3])
	{
	int i, skip;
	unsigned num;
	unsigned gen_mul = (g_scalar != NULL);
	felem nq[3], tmp[4];
	u64 bits;
	u8 sign, digit;

	/* set nq to the point at infinity */
	memset(nq, 0, 3 * sizeof(felem));

	/* Loop over all scalars msb-to-lsb, interleaving additions
	 * of multiples of the generator (two in each of the last 28 rounds)
	 * and additions of other points multiples (every 5th round).
	 */
	skip = 1; /* save two point operations in the first round */
	for (i = (num_points ? 220 : 27); i >= 0; --i)
		{
		/* double */
		if (!skip)
			point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);

		/* add multiples of the generator */
		if (gen_mul && (i <= 27))
			{
			/* first, look 28 bits upwards */
			bits = get_bit(g_scalar, i + 196) << 3;
			bits |= get_bit(g_scalar, i + 140) << 2;
			bits |= get_bit(g_scalar, i + 84) << 1;
			bits |= get_bit(g_scalar, i + 28);
			/* select the point to add, in constant time */
			select_point(bits, 16, g_pre_comp[1], tmp);

			if (!skip)
				{
				/* value 1 below is argument for "mixed" */
				point_add(nq[0], nq[1], nq[2],
					nq[0], nq[1], nq[2],
					1, tmp[0], tmp[1], tmp[2]);
				}
			else
				{
				memcpy(nq, tmp, 3 * sizeof(felem));
				skip = 0;
				}

			/* second, look at the current position */
			bits = get_bit(g_scalar, i + 168) << 3;
			bits |= get_bit(g_scalar, i + 112) << 2;
			bits |= get_bit(g_scalar, i + 56) << 1;
			bits |= get_bit(g_scalar, i);
			/* select the point to add, in constant time */
			select_point(bits, 16, g_pre_comp[0], tmp);
			point_add(nq[0], nq[1], nq[2],
				nq[0], nq[1], nq[2],
				1 /* mixed */, tmp[0], tmp[1], tmp[2]);
			}

		/* do other additions every 5 doublings */
		if (num_points && (i % 5 == 0))
			{
			/* loop over all scalars */
			for (num = 0; num < num_points; ++num)
				{
				bits = get_bit(scalars[num], i + 4) << 5;
				bits |= get_bit(scalars[num], i + 3) << 4;
				bits |= get_bit(scalars[num], i + 2) << 3;
				bits |= get_bit(scalars[num], i + 1) << 2;
				bits |= get_bit(scalars[num], i) << 1;
				bits |= get_bit(scalars[num], i - 1);
				ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);

				/* select the point to add or subtract */
				select_point(digit, 17, pre_comp[num], tmp);
				felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
				copy_conditional(tmp[1], tmp[3], sign);

				if (!skip)
					{
					point_add(nq[0], nq[1], nq[2],
						nq[0], nq[1], nq[2],
						mixed, tmp[0], tmp[1], tmp[2]);
					}
				else
					{
					memcpy(nq, tmp, 3 * sizeof(felem));
					skip = 0;
					}
				}
			}
		}
	felem_assign(x_out, nq[0]);
	felem_assign(y_out, nq[1]);
	felem_assign(z_out, nq[2]);
	}

/******************************************************************************/
/*		       FUNCTIONS TO MANAGE PRECOMPUTATION
 */

static NISTP224_PRE_COMP *nistp224_pre_comp_new()
	{
	NISTP224_PRE_COMP *ret = NULL;
	ret = (NISTP224_PRE_COMP *) OPENSSL_malloc(sizeof *ret);
	if (!ret)
		{
		ECerr(EC_F_NISTP224_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
		return ret;
		}
	memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
	ret->references = 1;
	return ret;
	}

static void *nistp224_pre_comp_dup(void *src_)
	{
	NISTP224_PRE_COMP *src = src_;

	/* no need to actually copy, these objects never change! */
	CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);

	return src_;
	}

static void nistp224_pre_comp_free(void *pre_)
	{
	int i;
	NISTP224_PRE_COMP *pre = pre_;

	if (!pre)
		return;

	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
	if (i > 0)
		return;

	OPENSSL_free(pre);
	}

static void nistp224_pre_comp_clear_free(void *pre_)
	{
	int i;
	NISTP224_PRE_COMP *pre = pre_;

	if (!pre)
		return;

	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
	if (i > 0)
		return;

	OPENSSL_cleanse(pre, sizeof *pre);
	OPENSSL_free(pre);
	}

/******************************************************************************/
/*			   OPENSSL EC_METHOD FUNCTIONS
 */

int ec_GFp_nistp224_group_init(EC_GROUP *group)
	{
	int ret;
	ret = ec_GFp_simple_group_init(group);
	group->a_is_minus3 = 1;
	return ret;
	}

int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
	const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
	{
	int ret = 0;
	BN_CTX *new_ctx = NULL;
	BIGNUM *curve_p, *curve_a, *curve_b;

	if (ctx == NULL)
		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
	BN_CTX_start(ctx);
	if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
		((curve_a = BN_CTX_get(ctx)) == NULL) ||
		((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
	BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
	BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
	BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
	if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
		(BN_cmp(curve_b, b)))
		{
		ECerr(EC_F_EC_GFP_NISTP224_GROUP_SET_CURVE,
			EC_R_WRONG_CURVE_PARAMETERS);
		goto err;
		}
	group->field_mod_func = BN_nist_mod_224;
	ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
err:
	BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}

/* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
 * (X', Y') = (X/Z^2, Y/Z^3) */
int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
	const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
	{
	felem z1, z2, x_in, y_in, x_out, y_out;
	widefelem tmp;

	if (EC_POINT_is_at_infinity(group, point))
		{
		ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
			EC_R_POINT_AT_INFINITY);
		return 0;
		}
	if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
		(!BN_to_felem(z1, &point->Z))) return 0;
	felem_inv(z2, z1);
	felem_square(tmp, z2); felem_reduce(z1, tmp);
	felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
	felem_contract(x_out, x_in);
	if (x != NULL)
		{
		if (!felem_to_BN(x, x_out)) {
		ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
			ERR_R_BN_LIB);
		return 0;
		}
		}
	felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
	felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
	felem_contract(y_out, y_in);
	if (y != NULL)
		{
		if (!felem_to_BN(y, y_out)) {
		ECerr(EC_F_EC_GFP_NISTP224_POINT_GET_AFFINE_COORDINATES,
			ERR_R_BN_LIB);
		return 0;
		}
		}
	return 1;
	}

static void make_points_affine(size_t num, felem points[/*num*/][3], felem tmp_felems[/*num+1*/])
	{
	/* Runs in constant time, unless an input is the point at infinity
	 * (which normally shouldn't happen). */
	ec_GFp_nistp_points_make_affine_internal(
		num,
		points,
		sizeof(felem),
		tmp_felems,
		(void (*)(void *)) felem_one,
		(int (*)(const void *)) felem_is_zero_int,
		(void (*)(void *, const void *)) felem_assign,
		(void (*)(void *, const void *)) felem_square_reduce,
		(void (*)(void *, const void *, const void *)) felem_mul_reduce,
		(void (*)(void *, const void *)) felem_inv,
		(void (*)(void *, const void *)) felem_contract);
	}

/* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
 * Result is stored in r (r can equal one of the inputs). */
int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
	const BIGNUM *scalar, size_t num, const EC_POINT *points[],
	const BIGNUM *scalars[], BN_CTX *ctx)
	{
	int ret = 0;
	int j;
	unsigned i;
	int mixed = 0;
	BN_CTX *new_ctx = NULL;
	BIGNUM *x, *y, *z, *tmp_scalar;
	felem_bytearray g_secret;
	felem_bytearray *secrets = NULL;
	felem (*pre_comp)[17][3] = NULL;
	felem *tmp_felems = NULL;
	felem_bytearray tmp;
	unsigned num_bytes;
	int have_pre_comp = 0;
	size_t num_points = num;
	felem x_in, y_in, z_in, x_out, y_out, z_out;
	NISTP224_PRE_COMP *pre = NULL;
	const felem (*g_pre_comp)[16][3] = NULL;
	EC_POINT *generator = NULL;
	const EC_POINT *p = NULL;
	const BIGNUM *p_scalar = NULL;

	if (ctx == NULL)
		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
	BN_CTX_start(ctx);
	if (((x = BN_CTX_get(ctx)) == NULL) ||
		((y = BN_CTX_get(ctx)) == NULL) ||
		((z = BN_CTX_get(ctx)) == NULL) ||
		((tmp_scalar = BN_CTX_get(ctx)) == NULL))
		goto err;

	if (scalar != NULL)
		{
		pre = EC_EX_DATA_get_data(group->extra_data,
			nistp224_pre_comp_dup, nistp224_pre_comp_free,
			nistp224_pre_comp_clear_free);
		if (pre)
			/* we have precomputation, try to use it */
			g_pre_comp = (const felem (*)[16][3]) pre->g_pre_comp;
		else
			/* try to use the standard precomputation */
			g_pre_comp = &gmul[0];
		generator = EC_POINT_new(group);
		if (generator == NULL)
			goto err;
		/* get the generator from precomputation */
		if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
			!felem_to_BN(y, g_pre_comp[0][1][1]) ||
			!felem_to_BN(z, g_pre_comp[0][1][2]))
			{
			ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
			goto err;
			}
		if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
				generator, x, y, z, ctx))
			goto err;
		if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
			/* precomputation matches generator */
			have_pre_comp = 1;
		else
			/* we don't have valid precomputation:
			 * treat the generator as a random point */
			num_points = num_points + 1;
		}

	if (num_points > 0)
		{
		if (num_points >= 3)
			{
			/* unless we precompute multiples for just one or two points,
			 * converting those into affine form is time well spent  */
			mixed = 1;
			}
		secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
		pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(felem));
		if (mixed)
			tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem));
		if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL)))
			{
			ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_MALLOC_FAILURE);
			goto err;
			}

		/* we treat NULL scalars as 0, and NULL points as points at infinity,
		 * i.e., they contribute nothing to the linear combination */
		memset(secrets, 0, num_points * sizeof(felem_bytearray));
		memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
		for (i = 0; i < num_points; ++i)
			{
			if (i == num)
				/* the generator */
				{
				p = EC_GROUP_get0_generator(group);
				p_scalar = scalar;
				}
			else
				/* the i^th point */
				{
				p = points[i];
				p_scalar = scalars[i];
				}
			if ((p_scalar != NULL) && (p != NULL))
				{
				/* reduce scalar to 0 <= scalar < 2^224 */
				if ((BN_num_bits(p_scalar) > 224) || (BN_is_negative(p_scalar)))
					{
					/* this is an unusual input, and we don't guarantee
					 * constant-timeness */
					if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
						{
						ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
						goto err;
						}
					num_bytes = BN_bn2bin(tmp_scalar, tmp);
					}
				else
					num_bytes = BN_bn2bin(p_scalar, tmp);
				flip_endian(secrets[i], tmp, num_bytes);
				/* precompute multiples */
				if ((!BN_to_felem(x_out, &p->X)) ||
					(!BN_to_felem(y_out, &p->Y)) ||
					(!BN_to_felem(z_out, &p->Z))) goto err;
				felem_assign(pre_comp[i][1][0], x_out);
				felem_assign(pre_comp[i][1][1], y_out);
				felem_assign(pre_comp[i][1][2], z_out);
				for (j = 2; j <= 16; ++j)
					{
					if (j & 1)
						{
						point_add(
							pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
							pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
							0, pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]);
						}
					else
						{
						point_double(
							pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
							pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]);
						}
					}
				}
			}
		if (mixed)
			make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
		}

	/* the scalar for the generator */
	if ((scalar != NULL) && (have_pre_comp))
		{
		memset(g_secret, 0, sizeof g_secret);
		/* reduce scalar to 0 <= scalar < 2^224 */
		if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar)))
			{
			/* this is an unusual input, and we don't guarantee
			 * constant-timeness */
			if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
				{
				ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
				goto err;
				}
			num_bytes = BN_bn2bin(tmp_scalar, tmp);
			}
		else
			num_bytes = BN_bn2bin(scalar, tmp);
		flip_endian(g_secret, tmp, num_bytes);
		/* do the multiplication with generator precomputation*/
		batch_mul(x_out, y_out, z_out,
			(const felem_bytearray (*)) secrets, num_points,
			g_secret,
			mixed, (const felem (*)[17][3]) pre_comp,
			g_pre_comp);
		}
	else
		/* do the multiplication without generator precomputation */
		batch_mul(x_out, y_out, z_out,
			(const felem_bytearray (*)) secrets, num_points,
			NULL, mixed, (const felem (*)[17][3]) pre_comp, NULL);
	/* reduce the output to its unique minimal representation */
	felem_contract(x_in, x_out);
	felem_contract(y_in, y_out);
	felem_contract(z_in, z_out);
	if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
		(!felem_to_BN(z, z_in)))
		{
		ECerr(EC_F_EC_GFP_NISTP224_POINTS_MUL, ERR_R_BN_LIB);
		goto err;
		}
	ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);

err:
	BN_CTX_end(ctx);
	if (generator != NULL)
		EC_POINT_free(generator);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	if (secrets != NULL)
		OPENSSL_free(secrets);
	if (pre_comp != NULL)
		OPENSSL_free(pre_comp);
	if (tmp_felems != NULL)
		OPENSSL_free(tmp_felems);
	return ret;
	}

int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
	{
	int ret = 0;
	NISTP224_PRE_COMP *pre = NULL;
	int i, j;
	BN_CTX *new_ctx = NULL;
	BIGNUM *x, *y;
	EC_POINT *generator = NULL;
	felem tmp_felems[32];

	/* throw away old precomputation */
	EC_EX_DATA_free_data(&group->extra_data, nistp224_pre_comp_dup,
		nistp224_pre_comp_free, nistp224_pre_comp_clear_free);
	if (ctx == NULL)
		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
	BN_CTX_start(ctx);
	if (((x = BN_CTX_get(ctx)) == NULL) ||
		((y = BN_CTX_get(ctx)) == NULL))
		goto err;
	/* get the generator */
	if (group->generator == NULL) goto err;
	generator = EC_POINT_new(group);
	if (generator == NULL)
		goto err;
	BN_bin2bn(nistp224_curve_params[3], sizeof (felem_bytearray), x);
	BN_bin2bn(nistp224_curve_params[4], sizeof (felem_bytearray), y);
	if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
		goto err;
	if ((pre = nistp224_pre_comp_new()) == NULL)
		goto err;
	/* if the generator is the standard one, use built-in precomputation */
	if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
		{
		memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
		ret = 1;
		goto err;
		}
	if ((!BN_to_felem(pre->g_pre_comp[0][1][0], &group->generator->X)) ||
		(!BN_to_felem(pre->g_pre_comp[0][1][1], &group->generator->Y)) ||
		(!BN_to_felem(pre->g_pre_comp[0][1][2], &group->generator->Z)))
		goto err;
	/* compute 2^56*G, 2^112*G, 2^168*G for the first table,
	 * 2^28*G, 2^84*G, 2^140*G, 2^196*G for the second one
	 */
	for (i = 1; i <= 8; i <<= 1)
		{
		point_double(
			pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
			pre->g_pre_comp[0][i][0], pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
		for (j = 0; j < 27; ++j)
			{
			point_double(
				pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2],
				pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
			}
		if (i == 8)
			break;
		point_double(
			pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
			pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
		for (j = 0; j < 27; ++j)
			{
			point_double(
				pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2],
				pre->g_pre_comp[0][2*i][0], pre->g_pre_comp[0][2*i][1], pre->g_pre_comp[0][2*i][2]);
			}
		}
	for (i = 0; i < 2; i++)
		{
		/* g_pre_comp[i][0] is the point at infinity */
		memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
		/* the remaining multiples */
		/* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
		point_add(
			pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
			pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
			pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
			0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
			pre->g_pre_comp[i][2][2]);
		/* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
		point_add(
			pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
			pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
			pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
			0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
			pre->g_pre_comp[i][2][2]);
		/* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
		point_add(
			pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
			pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
			pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
			0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
			pre->g_pre_comp[i][4][2]);
		/* 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G */
		point_add(
			pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
			pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
			pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
			0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
			pre->g_pre_comp[i][2][2]);
		for (j = 1; j < 8; ++j)
			{
			/* odd multiples: add G resp. 2^28*G */
			point_add(
				pre->g_pre_comp[i][2*j+1][0], pre->g_pre_comp[i][2*j+1][1],
				pre->g_pre_comp[i][2*j+1][2], pre->g_pre_comp[i][2*j][0],
				pre->g_pre_comp[i][2*j][1], pre->g_pre_comp[i][2*j][2],
				0, pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
				pre->g_pre_comp[i][1][2]);
			}
		}
	make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);

	if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp224_pre_comp_dup,
			nistp224_pre_comp_free, nistp224_pre_comp_clear_free))
		goto err;
	ret = 1;
	pre = NULL;
 err:
	BN_CTX_end(ctx);
	if (generator != NULL)
		EC_POINT_free(generator);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	if (pre)
		nistp224_pre_comp_free(pre);
	return ret;
	}

int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
	{
	if (EC_EX_DATA_get_data(group->extra_data, nistp224_pre_comp_dup,
			nistp224_pre_comp_free, nistp224_pre_comp_clear_free)
		!= NULL)
		return 1;
	else
		return 0;
	}

#else
static void *dummy=&dummy;
#endif