1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
|
#!/usr/bin/env perl
# Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the Apache License 2.0 (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# Keccak-1600 for AVX-512F.
#
# July 2017.
#
# Below code is KECCAK_1X_ALT implementation (see sha/keccak1600.c).
# Pretty straightforward, the only "magic" is data layout in registers.
# It's impossible to have one that is optimal for every step, hence
# it's changing as algorithm progresses. Data is saved in linear order,
# but in-register order morphs between rounds. Even rounds take in
# linear layout, and odd rounds - transposed, or "verticaly-shaped"...
#
########################################################################
# Numbers are cycles per processed byte out of large message.
#
# r=1088(*)
#
# Knights Landing 7.6
# Skylake-X 5.7
#
# (*) Corresponds to SHA3-256.
########################################################################
# Below code is combination of two ideas. One is taken from Keccak Code
# Package, hereafter KCP, and another one from initial version of this
# module. What is common is observation that Pi's input and output are
# "mostly transposed", i.e. if input is aligned by x coordinate, then
# output is [mostly] aligned by y. Both versions, KCP and predecessor,
# were trying to use one of them from round to round, which resulted in
# some kind of transposition in each round. This version still does
# transpose data, but only every second round. Another essential factor
# is that KCP transposition has to be performed with instructions that
# turned to be rather expensive on Knights Landing, both latency- and
# throughput-wise. Not to mention that some of them have to depend on
# each other. On the other hand initial version of this module was
# relying heavily on blend instructions. There were lots of them,
# resulting in higher instruction count, yet it performed better on
# Knights Landing, because processor can execute pair of them each
# cycle and they have minimal latency. This module is an attempt to
# bring best parts together:-)
#
# Coordinates below correspond to those in sha/keccak1600.c. Input
# layout is straight linear:
#
# [0][4] [0][3] [0][2] [0][1] [0][0]
# [1][4] [1][3] [1][2] [1][1] [1][0]
# [2][4] [2][3] [2][2] [2][1] [2][0]
# [3][4] [3][3] [3][2] [3][1] [3][0]
# [4][4] [4][3] [4][2] [4][1] [4][0]
#
# It's perfect for Theta, while Pi is reduced to intra-register
# permutations which yield layout perfect for Chi:
#
# [4][0] [3][0] [2][0] [1][0] [0][0]
# [4][1] [3][1] [2][1] [1][1] [0][1]
# [4][2] [3][2] [2][2] [1][2] [0][2]
# [4][3] [3][3] [2][3] [1][3] [0][3]
# [4][4] [3][4] [2][4] [1][4] [0][4]
#
# Now instead of performing full transposition and feeding it to next
# identical round, we perform kind of diagonal transposition to layout
# from initial version of this module, and make it suitable for Theta:
#
# [4][4] [3][3] [2][2] [1][1] [0][0]>4.3.2.1.0>[4][4] [3][3] [2][2] [1][1] [0][0]
# [4][0] [3][4] [2][3] [1][2] [0][1]>3.2.1.0.4>[3][4] [2][3] [1][2] [0][1] [4][0]
# [4][1] [3][0] [2][4] [1][3] [0][2]>2.1.0.4.3>[2][4] [1][3] [0][2] [4][1] [3][0]
# [4][2] [3][1] [2][0] [1][4] [0][3]>1.0.4.3.2>[1][4] [0][3] [4][2] [3][1] [2][0]
# [4][3] [3][2] [2][1] [1][0] [0][4]>0.4.3.2.1>[0][4] [4][3] [3][2] [2][1] [1][0]
#
# Now intra-register permutations yield initial [almost] straight
# linear layout:
#
# [4][4] [3][3] [2][2] [1][1] [0][0]
##[0][4] [0][3] [0][2] [0][1] [0][0]
# [3][4] [2][3] [1][2] [0][1] [4][0]
##[2][3] [2][2] [2][1] [2][0] [2][4]
# [2][4] [1][3] [0][2] [4][1] [3][0]
##[4][2] [4][1] [4][0] [4][4] [4][3]
# [1][4] [0][3] [4][2] [3][1] [2][0]
##[1][1] [1][0] [1][4] [1][3] [1][2]
# [0][4] [4][3] [3][2] [2][1] [1][0]
##[3][0] [3][4] [3][3] [3][2] [3][1]
#
# This means that odd round Chi is performed in less suitable layout,
# with a number of additional permutations. But overall it turned to be
# a win. Permutations are fastest possible on Knights Landing and they
# are laid down to be independent of each other. In the essence I traded
# 20 blend instructions for 3 permutations. The result is 13% faster
# than KCP on Skylake-X, and >40% on Knights Landing.
#
# As implied, data is loaded in straight linear order. Digits in
# variables' names represent coordinates of right-most element of
# loaded data chunk:
my ($A00, # [0][4] [0][3] [0][2] [0][1] [0][0]
$A10, # [1][4] [1][3] [1][2] [1][1] [1][0]
$A20, # [2][4] [2][3] [2][2] [2][1] [2][0]
$A30, # [3][4] [3][3] [3][2] [3][1] [3][0]
$A40) = # [4][4] [4][3] [4][2] [4][1] [4][0]
map("%zmm$_",(0..4));
# We also need to map the magic order into offsets within structure:
my @A_jagged = ([0,0], [0,1], [0,2], [0,3], [0,4],
[1,0], [1,1], [1,2], [1,3], [1,4],
[2,0], [2,1], [2,2], [2,3], [2,4],
[3,0], [3,1], [3,2], [3,3], [3,4],
[4,0], [4,1], [4,2], [4,3], [4,4]);
@A_jagged = map(8*($$_[0]*8+$$_[1]), @A_jagged); # ... and now linear
my @T = map("%zmm$_",(5..12));
my @Theta = map("%zmm$_",(33,13..16)); # invalid @Theta[0] is not typo
my @Pi0 = map("%zmm$_",(17..21));
my @Rhotate0 = map("%zmm$_",(22..26));
my @Rhotate1 = map("%zmm$_",(27..31));
my ($C00,$D00) = @T[0..1];
my ($k00001,$k00010,$k00100,$k01000,$k10000,$k11111) = map("%k$_",(1..6));
$code.=<<___;
.text
.type __KeccakF1600,\@function
.align 32
__KeccakF1600:
lea iotas(%rip),%r10
mov \$12,%eax
jmp .Loop_avx512
.align 32
.Loop_avx512:
######################################### Theta, even round
vmovdqa64 $A00,@T[0] # put aside original A00
vpternlogq \$0x96,$A20,$A10,$A00 # and use it as "C00"
vpternlogq \$0x96,$A40,$A30,$A00
vprolq \$1,$A00,$D00
vpermq $A00,@Theta[1],$A00
vpermq $D00,@Theta[4],$D00
vpternlogq \$0x96,$A00,$D00,@T[0] # T[0] is original A00
vpternlogq \$0x96,$A00,$D00,$A10
vpternlogq \$0x96,$A00,$D00,$A20
vpternlogq \$0x96,$A00,$D00,$A30
vpternlogq \$0x96,$A00,$D00,$A40
######################################### Rho
vprolvq @Rhotate0[0],@T[0],$A00 # T[0] is original A00
vprolvq @Rhotate0[1],$A10,$A10
vprolvq @Rhotate0[2],$A20,$A20
vprolvq @Rhotate0[3],$A30,$A30
vprolvq @Rhotate0[4],$A40,$A40
######################################### Pi
vpermq $A00,@Pi0[0],$A00
vpermq $A10,@Pi0[1],$A10
vpermq $A20,@Pi0[2],$A20
vpermq $A30,@Pi0[3],$A30
vpermq $A40,@Pi0[4],$A40
######################################### Chi
vmovdqa64 $A00,@T[0]
vmovdqa64 $A10,@T[1]
vpternlogq \$0xD2,$A20,$A10,$A00
vpternlogq \$0xD2,$A30,$A20,$A10
vpternlogq \$0xD2,$A40,$A30,$A20
vpternlogq \$0xD2,@T[0],$A40,$A30
vpternlogq \$0xD2,@T[1],@T[0],$A40
######################################### Iota
vpxorq (%r10),$A00,${A00}{$k00001}
lea 16(%r10),%r10
######################################### Harmonize rounds
vpblendmq $A20,$A10,@{T[1]}{$k00010}
vpblendmq $A30,$A20,@{T[2]}{$k00010}
vpblendmq $A40,$A30,@{T[3]}{$k00010}
vpblendmq $A10,$A00,@{T[0]}{$k00010}
vpblendmq $A00,$A40,@{T[4]}{$k00010}
vpblendmq $A30,@T[1],@{T[1]}{$k00100}
vpblendmq $A40,@T[2],@{T[2]}{$k00100}
vpblendmq $A20,@T[0],@{T[0]}{$k00100}
vpblendmq $A00,@T[3],@{T[3]}{$k00100}
vpblendmq $A10,@T[4],@{T[4]}{$k00100}
vpblendmq $A40,@T[1],@{T[1]}{$k01000}
vpblendmq $A30,@T[0],@{T[0]}{$k01000}
vpblendmq $A00,@T[2],@{T[2]}{$k01000}
vpblendmq $A10,@T[3],@{T[3]}{$k01000}
vpblendmq $A20,@T[4],@{T[4]}{$k01000}
vpblendmq $A40,@T[0],@{T[0]}{$k10000}
vpblendmq $A00,@T[1],@{T[1]}{$k10000}
vpblendmq $A10,@T[2],@{T[2]}{$k10000}
vpblendmq $A20,@T[3],@{T[3]}{$k10000}
vpblendmq $A30,@T[4],@{T[4]}{$k10000}
#vpermq @T[0],@Theta[0],$A00 # doesn't actually change order
vpermq @T[1],@Theta[1],$A10
vpermq @T[2],@Theta[2],$A20
vpermq @T[3],@Theta[3],$A30
vpermq @T[4],@Theta[4],$A40
######################################### Theta, odd round
vmovdqa64 $T[0],$A00 # real A00
vpternlogq \$0x96,$A20,$A10,$C00 # C00 is @T[0]'s alias
vpternlogq \$0x96,$A40,$A30,$C00
vprolq \$1,$C00,$D00
vpermq $C00,@Theta[1],$C00
vpermq $D00,@Theta[4],$D00
vpternlogq \$0x96,$C00,$D00,$A00
vpternlogq \$0x96,$C00,$D00,$A30
vpternlogq \$0x96,$C00,$D00,$A10
vpternlogq \$0x96,$C00,$D00,$A40
vpternlogq \$0x96,$C00,$D00,$A20
######################################### Rho
vprolvq @Rhotate1[0],$A00,$A00
vprolvq @Rhotate1[3],$A30,@T[1]
vprolvq @Rhotate1[1],$A10,@T[2]
vprolvq @Rhotate1[4],$A40,@T[3]
vprolvq @Rhotate1[2],$A20,@T[4]
vpermq $A00,@Theta[4],@T[5]
vpermq $A00,@Theta[3],@T[6]
######################################### Iota
vpxorq -8(%r10),$A00,${A00}{$k00001}
######################################### Pi
vpermq @T[1],@Theta[2],$A10
vpermq @T[2],@Theta[4],$A20
vpermq @T[3],@Theta[1],$A30
vpermq @T[4],@Theta[3],$A40
######################################### Chi
vpternlogq \$0xD2,@T[6],@T[5],$A00
vpermq @T[1],@Theta[1],@T[7]
#vpermq @T[1],@Theta[0],@T[1]
vpternlogq \$0xD2,@T[1],@T[7],$A10
vpermq @T[2],@Theta[3],@T[0]
vpermq @T[2],@Theta[2],@T[2]
vpternlogq \$0xD2,@T[2],@T[0],$A20
#vpermq @T[3],@Theta[0],@T[3]
vpermq @T[3],@Theta[4],@T[1]
vpternlogq \$0xD2,@T[1],@T[3],$A30
vpermq @T[4],@Theta[2],@T[0]
vpermq @T[4],@Theta[1],@T[4]
vpternlogq \$0xD2,@T[4],@T[0],$A40
dec %eax
jnz .Loop_avx512
ret
.size __KeccakF1600,.-__KeccakF1600
___
my ($A_flat,$inp,$len,$bsz) = ("%rdi","%rsi","%rdx","%rcx");
my $out = $inp; # in squeeze
$code.=<<___;
.globl SHA3_absorb
.type SHA3_absorb,\@function
.align 32
SHA3_absorb:
mov %rsp,%r11
lea -320(%rsp),%rsp
and \$-64,%rsp
lea 96($A_flat),$A_flat
lea 96($inp),$inp
lea 128(%rsp),%r9
lea theta_perm(%rip),%r8
kxnorw $k11111,$k11111,$k11111
kshiftrw \$15,$k11111,$k00001
kshiftrw \$11,$k11111,$k11111
kshiftlw \$1,$k00001,$k00010
kshiftlw \$2,$k00001,$k00100
kshiftlw \$3,$k00001,$k01000
kshiftlw \$4,$k00001,$k10000
#vmovdqa64 64*0(%r8),@Theta[0]
vmovdqa64 64*1(%r8),@Theta[1]
vmovdqa64 64*2(%r8),@Theta[2]
vmovdqa64 64*3(%r8),@Theta[3]
vmovdqa64 64*4(%r8),@Theta[4]
vmovdqa64 64*5(%r8),@Rhotate1[0]
vmovdqa64 64*6(%r8),@Rhotate1[1]
vmovdqa64 64*7(%r8),@Rhotate1[2]
vmovdqa64 64*8(%r8),@Rhotate1[3]
vmovdqa64 64*9(%r8),@Rhotate1[4]
vmovdqa64 64*10(%r8),@Rhotate0[0]
vmovdqa64 64*11(%r8),@Rhotate0[1]
vmovdqa64 64*12(%r8),@Rhotate0[2]
vmovdqa64 64*13(%r8),@Rhotate0[3]
vmovdqa64 64*14(%r8),@Rhotate0[4]
vmovdqa64 64*15(%r8),@Pi0[0]
vmovdqa64 64*16(%r8),@Pi0[1]
vmovdqa64 64*17(%r8),@Pi0[2]
vmovdqa64 64*18(%r8),@Pi0[3]
vmovdqa64 64*19(%r8),@Pi0[4]
vmovdqu64 40*0-96($A_flat),${A00}{$k11111}{z}
vpxorq @T[0],@T[0],@T[0]
vmovdqu64 40*1-96($A_flat),${A10}{$k11111}{z}
vmovdqu64 40*2-96($A_flat),${A20}{$k11111}{z}
vmovdqu64 40*3-96($A_flat),${A30}{$k11111}{z}
vmovdqu64 40*4-96($A_flat),${A40}{$k11111}{z}
vmovdqa64 @T[0],0*64-128(%r9) # zero transfer area on stack
vmovdqa64 @T[0],1*64-128(%r9)
vmovdqa64 @T[0],2*64-128(%r9)
vmovdqa64 @T[0],3*64-128(%r9)
vmovdqa64 @T[0],4*64-128(%r9)
jmp .Loop_absorb_avx512
.align 32
.Loop_absorb_avx512:
mov $bsz,%rax
sub $bsz,$len
jc .Ldone_absorb_avx512
shr \$3,%eax
___
for(my $i=0; $i<25; $i++) {
$code.=<<___
mov 8*$i-96($inp),%r8
mov %r8,$A_jagged[$i]-128(%r9)
dec %eax
jz .Labsorved_avx512
___
}
$code.=<<___;
.Labsorved_avx512:
lea ($inp,$bsz),$inp
vpxorq 64*0-128(%r9),$A00,$A00
vpxorq 64*1-128(%r9),$A10,$A10
vpxorq 64*2-128(%r9),$A20,$A20
vpxorq 64*3-128(%r9),$A30,$A30
vpxorq 64*4-128(%r9),$A40,$A40
call __KeccakF1600
jmp .Loop_absorb_avx512
.align 32
.Ldone_absorb_avx512:
vmovdqu64 $A00,40*0-96($A_flat){$k11111}
vmovdqu64 $A10,40*1-96($A_flat){$k11111}
vmovdqu64 $A20,40*2-96($A_flat){$k11111}
vmovdqu64 $A30,40*3-96($A_flat){$k11111}
vmovdqu64 $A40,40*4-96($A_flat){$k11111}
vzeroupper
lea (%r11),%rsp
lea ($len,$bsz),%rax # return value
ret
.size SHA3_absorb,.-SHA3_absorb
.globl SHA3_squeeze
.type SHA3_squeeze,\@function
.align 32
SHA3_squeeze:
mov %rsp,%r11
lea 96($A_flat),$A_flat
cmp $bsz,$len
jbe .Lno_output_extension_avx512
lea theta_perm(%rip),%r8
kxnorw $k11111,$k11111,$k11111
kshiftrw \$15,$k11111,$k00001
kshiftrw \$11,$k11111,$k11111
kshiftlw \$1,$k00001,$k00010
kshiftlw \$2,$k00001,$k00100
kshiftlw \$3,$k00001,$k01000
kshiftlw \$4,$k00001,$k10000
#vmovdqa64 64*0(%r8),@Theta[0]
vmovdqa64 64*1(%r8),@Theta[1]
vmovdqa64 64*2(%r8),@Theta[2]
vmovdqa64 64*3(%r8),@Theta[3]
vmovdqa64 64*4(%r8),@Theta[4]
vmovdqa64 64*5(%r8),@Rhotate1[0]
vmovdqa64 64*6(%r8),@Rhotate1[1]
vmovdqa64 64*7(%r8),@Rhotate1[2]
vmovdqa64 64*8(%r8),@Rhotate1[3]
vmovdqa64 64*9(%r8),@Rhotate1[4]
vmovdqa64 64*10(%r8),@Rhotate0[0]
vmovdqa64 64*11(%r8),@Rhotate0[1]
vmovdqa64 64*12(%r8),@Rhotate0[2]
vmovdqa64 64*13(%r8),@Rhotate0[3]
vmovdqa64 64*14(%r8),@Rhotate0[4]
vmovdqa64 64*15(%r8),@Pi0[0]
vmovdqa64 64*16(%r8),@Pi0[1]
vmovdqa64 64*17(%r8),@Pi0[2]
vmovdqa64 64*18(%r8),@Pi0[3]
vmovdqa64 64*19(%r8),@Pi0[4]
vmovdqu64 40*0-96($A_flat),${A00}{$k11111}{z}
vmovdqu64 40*1-96($A_flat),${A10}{$k11111}{z}
vmovdqu64 40*2-96($A_flat),${A20}{$k11111}{z}
vmovdqu64 40*3-96($A_flat),${A30}{$k11111}{z}
vmovdqu64 40*4-96($A_flat),${A40}{$k11111}{z}
.Lno_output_extension_avx512:
shr \$3,$bsz
lea -96($A_flat),%r9
mov $bsz,%rax
jmp .Loop_squeeze_avx512
.align 32
.Loop_squeeze_avx512:
cmp \$8,$len
jb .Ltail_squeeze_avx512
mov (%r9),%r8
lea 8(%r9),%r9
mov %r8,($out)
lea 8($out),$out
sub \$8,$len # len -= 8
jz .Ldone_squeeze_avx512
sub \$1,%rax # bsz--
jnz .Loop_squeeze_avx512
#vpermq @Theta[4],@Theta[4],@Theta[3]
#vpermq @Theta[3],@Theta[4],@Theta[2]
#vpermq @Theta[3],@Theta[3],@Theta[1]
call __KeccakF1600
vmovdqu64 $A00,40*0-96($A_flat){$k11111}
vmovdqu64 $A10,40*1-96($A_flat){$k11111}
vmovdqu64 $A20,40*2-96($A_flat){$k11111}
vmovdqu64 $A30,40*3-96($A_flat){$k11111}
vmovdqu64 $A40,40*4-96($A_flat){$k11111}
lea -96($A_flat),%r9
mov $bsz,%rax
jmp .Loop_squeeze_avx512
.Ltail_squeeze_avx512:
mov $out,%rdi
mov %r9,%rsi
mov $len,%rcx
.byte 0xf3,0xa4 # rep movsb
.Ldone_squeeze_avx512:
vzeroupper
lea (%r11),%rsp
ret
.size SHA3_squeeze,.-SHA3_squeeze
.align 64
theta_perm:
.quad 0, 1, 2, 3, 4, 5, 6, 7 # [not used]
.quad 4, 0, 1, 2, 3, 5, 6, 7
.quad 3, 4, 0, 1, 2, 5, 6, 7
.quad 2, 3, 4, 0, 1, 5, 6, 7
.quad 1, 2, 3, 4, 0, 5, 6, 7
rhotates1:
.quad 0, 44, 43, 21, 14, 0, 0, 0 # [0][0] [1][1] [2][2] [3][3] [4][4]
.quad 18, 1, 6, 25, 8, 0, 0, 0 # [4][0] [0][1] [1][2] [2][3] [3][4]
.quad 41, 2, 62, 55, 39, 0, 0, 0 # [3][0] [4][1] [0][2] [1][3] [2][4]
.quad 3, 45, 61, 28, 20, 0, 0, 0 # [2][0] [3][1] [4][2] [0][3] [1][4]
.quad 36, 10, 15, 56, 27, 0, 0, 0 # [1][0] [2][1] [3][2] [4][3] [0][4]
rhotates0:
.quad 0, 1, 62, 28, 27, 0, 0, 0
.quad 36, 44, 6, 55, 20, 0, 0, 0
.quad 3, 10, 43, 25, 39, 0, 0, 0
.quad 41, 45, 15, 21, 8, 0, 0, 0
.quad 18, 2, 61, 56, 14, 0, 0, 0
pi0_perm:
.quad 0, 3, 1, 4, 2, 5, 6, 7
.quad 1, 4, 2, 0, 3, 5, 6, 7
.quad 2, 0, 3, 1, 4, 5, 6, 7
.quad 3, 1, 4, 2, 0, 5, 6, 7
.quad 4, 2, 0, 3, 1, 5, 6, 7
iotas:
.quad 0x0000000000000001
.quad 0x0000000000008082
.quad 0x800000000000808a
.quad 0x8000000080008000
.quad 0x000000000000808b
.quad 0x0000000080000001
.quad 0x8000000080008081
.quad 0x8000000000008009
.quad 0x000000000000008a
.quad 0x0000000000000088
.quad 0x0000000080008009
.quad 0x000000008000000a
.quad 0x000000008000808b
.quad 0x800000000000008b
.quad 0x8000000000008089
.quad 0x8000000000008003
.quad 0x8000000000008002
.quad 0x8000000000000080
.quad 0x000000000000800a
.quad 0x800000008000000a
.quad 0x8000000080008081
.quad 0x8000000000008080
.quad 0x0000000080000001
.quad 0x8000000080008008
.asciz "Keccak-1600 absorb and squeeze for AVX-512F, CRYPTOGAMS by <appro\@openssl.org>"
___
$output=pop and open STDOUT,">$output";
print $code;
close STDOUT or die "error closing STDOUT";
|