1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
/*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/asn1t.h>
#include <openssl/x509.h>
#include "crypto/asn1.h"
#include "crypto/evp.h"
#include "crypto/x509.h"
#include <openssl/rsa.h>
#include <openssl/dsa.h>
struct X509_pubkey_st {
X509_ALGOR *algor;
ASN1_BIT_STRING *public_key;
EVP_PKEY *pkey;
};
static int x509_pubkey_decode(EVP_PKEY **pk, X509_PUBKEY *key);
/* Minor tweak to operation: free up EVP_PKEY */
static int pubkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg)
{
if (operation == ASN1_OP_FREE_POST) {
X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval;
EVP_PKEY_free(pubkey->pkey);
} else if (operation == ASN1_OP_D2I_POST) {
/* Attempt to decode public key and cache in pubkey structure. */
X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval;
EVP_PKEY_free(pubkey->pkey);
pubkey->pkey = NULL;
/*
* Opportunistically decode the key but remove any non fatal errors
* from the queue. Subsequent explicit attempts to decode/use the key
* will return an appropriate error.
*/
ERR_set_mark();
if (x509_pubkey_decode(&pubkey->pkey, pubkey) == -1)
return 0;
ERR_pop_to_mark();
}
return 1;
}
ASN1_SEQUENCE_cb(X509_PUBKEY, pubkey_cb) = {
ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR),
ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END_cb(X509_PUBKEY, X509_PUBKEY)
IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY)
IMPLEMENT_ASN1_DUP_FUNCTION(X509_PUBKEY)
/* TODO should better be called X509_PUBKEY_set1 */
int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey)
{
X509_PUBKEY *pk = NULL;
if (x == NULL)
return 0;
if ((pk = X509_PUBKEY_new()) == NULL)
goto error;
if (pkey != NULL && pkey->ameth) {
if (pkey->ameth->pub_encode) {
if (!pkey->ameth->pub_encode(pk, pkey)) {
X509err(X509_F_X509_PUBKEY_SET,
X509_R_PUBLIC_KEY_ENCODE_ERROR);
goto error;
}
} else {
X509err(X509_F_X509_PUBKEY_SET, X509_R_METHOD_NOT_SUPPORTED);
goto error;
}
} else {
X509err(X509_F_X509_PUBKEY_SET, X509_R_UNSUPPORTED_ALGORITHM);
goto error;
}
X509_PUBKEY_free(*x);
*x = pk;
pk->pkey = pkey;
return EVP_PKEY_up_ref(pkey);
error:
X509_PUBKEY_free(pk);
return 0;
}
/*
* Attempt to decode a public key.
* Returns 1 on success, 0 for a decode failure and -1 for a fatal
* error e.g. malloc failure.
*/
static int x509_pubkey_decode(EVP_PKEY **ppkey, X509_PUBKEY *key)
{
EVP_PKEY *pkey = EVP_PKEY_new();
if (pkey == NULL) {
X509err(X509_F_X509_PUBKEY_DECODE, ERR_R_MALLOC_FAILURE);
return -1;
}
if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(key->algor->algorithm))) {
X509err(X509_F_X509_PUBKEY_DECODE, X509_R_UNSUPPORTED_ALGORITHM);
goto error;
}
if (pkey->ameth->pub_decode) {
/*
* Treat any failure of pub_decode as a decode error. In
* future we could have different return codes for decode
* errors and fatal errors such as malloc failure.
*/
if (!pkey->ameth->pub_decode(pkey, key)) {
X509err(X509_F_X509_PUBKEY_DECODE, X509_R_PUBLIC_KEY_DECODE_ERROR);
goto error;
}
} else {
X509err(X509_F_X509_PUBKEY_DECODE, X509_R_METHOD_NOT_SUPPORTED);
goto error;
}
*ppkey = pkey;
return 1;
error:
EVP_PKEY_free(pkey);
return 0;
}
EVP_PKEY *X509_PUBKEY_get0(X509_PUBKEY *key)
{
EVP_PKEY *ret = NULL;
if (key == NULL || key->public_key == NULL)
return NULL;
if (key->pkey != NULL)
return key->pkey;
/*
* When the key ASN.1 is initially parsed an attempt is made to
* decode the public key and cache the EVP_PKEY structure. If this
* operation fails the cached value will be NULL. Parsing continues
* to allow parsing of unknown key types or unsupported forms.
* We repeat the decode operation so the appropriate errors are left
* in the queue.
*/
x509_pubkey_decode(&ret, key);
/* If decode doesn't fail something bad happened */
if (ret != NULL) {
X509err(X509_F_X509_PUBKEY_GET0, ERR_R_INTERNAL_ERROR);
EVP_PKEY_free(ret);
}
return NULL;
}
EVP_PKEY *X509_PUBKEY_get(X509_PUBKEY *key)
{
EVP_PKEY *ret = X509_PUBKEY_get0(key);
if (ret != NULL)
EVP_PKEY_up_ref(ret);
return ret;
}
/*
* Now two pseudo ASN1 routines that take an EVP_PKEY structure and encode or
* decode as X509_PUBKEY
*/
EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length)
{
X509_PUBKEY *xpk;
EVP_PKEY *pktmp;
const unsigned char *q;
q = *pp;
xpk = d2i_X509_PUBKEY(NULL, &q, length);
if (xpk == NULL)
return NULL;
pktmp = X509_PUBKEY_get(xpk);
X509_PUBKEY_free(xpk);
if (pktmp == NULL)
return NULL;
*pp = q;
if (a != NULL) {
EVP_PKEY_free(*a);
*a = pktmp;
}
return pktmp;
}
int i2d_PUBKEY(const EVP_PKEY *a, unsigned char **pp)
{
X509_PUBKEY *xpk = NULL;
int ret = -1;
if (a == NULL)
return 0;
if ((xpk = X509_PUBKEY_new()) == NULL)
return -1;
if (a->ameth != NULL && a->ameth->pub_encode != NULL
&& !a->ameth->pub_encode(xpk, a))
goto error;
xpk->pkey = (EVP_PKEY *)a;
ret = i2d_X509_PUBKEY(xpk, pp);
xpk->pkey = NULL;
error:
X509_PUBKEY_free(xpk);
return ret;
}
/*
* The following are equivalents but which return RSA and DSA keys
*/
#ifndef OPENSSL_NO_RSA
RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
RSA *key;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY(NULL, &q, length);
if (pkey == NULL)
return NULL;
key = EVP_PKEY_get1_RSA(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
RSA_free(*a);
*a = key;
}
return key;
}
int i2d_RSA_PUBKEY(const RSA *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (!a)
return 0;
pktmp = EVP_PKEY_new();
if (pktmp == NULL) {
ASN1err(ASN1_F_I2D_RSA_PUBKEY, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign_RSA(pktmp, (RSA *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
#endif
#ifndef OPENSSL_NO_DSA
DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
DSA *key;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY(NULL, &q, length);
if (pkey == NULL)
return NULL;
key = EVP_PKEY_get1_DSA(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
DSA_free(*a);
*a = key;
}
return key;
}
int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (!a)
return 0;
pktmp = EVP_PKEY_new();
if (pktmp == NULL) {
ASN1err(ASN1_F_I2D_DSA_PUBKEY, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign_DSA(pktmp, (DSA *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
#endif
#ifndef OPENSSL_NO_EC
EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
EC_KEY *key;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY(NULL, &q, length);
if (pkey == NULL)
return NULL;
key = EVP_PKEY_get1_EC_KEY(pkey);
EVP_PKEY_free(pkey);
if (key == NULL)
return NULL;
*pp = q;
if (a != NULL) {
EC_KEY_free(*a);
*a = key;
}
return key;
}
int i2d_EC_PUBKEY(const EC_KEY *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (a == NULL)
return 0;
if ((pktmp = EVP_PKEY_new()) == NULL) {
ASN1err(ASN1_F_I2D_EC_PUBKEY, ERR_R_MALLOC_FAILURE);
return -1;
}
(void)EVP_PKEY_assign_EC_KEY(pktmp, (EC_KEY *)a);
ret = i2d_PUBKEY(pktmp, pp);
pktmp->pkey.ptr = NULL;
EVP_PKEY_free(pktmp);
return ret;
}
#endif
int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj,
int ptype, void *pval,
unsigned char *penc, int penclen)
{
if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval))
return 0;
if (penc) {
OPENSSL_free(pub->public_key->data);
pub->public_key->data = penc;
pub->public_key->length = penclen;
/* Set number of unused bits to zero */
pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07);
pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT;
}
return 1;
}
int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg,
const unsigned char **pk, int *ppklen,
X509_ALGOR **pa, X509_PUBKEY *pub)
{
if (ppkalg)
*ppkalg = pub->algor->algorithm;
if (pk) {
*pk = pub->public_key->data;
*ppklen = pub->public_key->length;
}
if (pa)
*pa = pub->algor;
return 1;
}
ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x)
{
if (x == NULL)
return NULL;
return x->cert_info.key->public_key;
}
|