1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
|
=pod
=head1 NAME
EVP_PKEY_CTX_ctrl,
EVP_PKEY_CTX_ctrl_str,
EVP_PKEY_CTX_ctrl_uint64,
EVP_PKEY_CTX_md,
EVP_PKEY_CTX_set_signature_md,
EVP_PKEY_CTX_get_signature_md,
EVP_PKEY_CTX_set_mac_key,
EVP_PKEY_CTX_set_group_name,
EVP_PKEY_CTX_get_group_name,
EVP_PKEY_CTX_set_rsa_padding,
EVP_PKEY_CTX_get_rsa_padding,
EVP_PKEY_CTX_set_rsa_pss_saltlen,
EVP_PKEY_CTX_get_rsa_pss_saltlen,
EVP_PKEY_CTX_set_rsa_keygen_bits,
EVP_PKEY_CTX_set_rsa_keygen_pubexp,
EVP_PKEY_CTX_set_rsa_keygen_primes,
EVP_PKEY_CTX_set_rsa_mgf1_md_name,
EVP_PKEY_CTX_set_rsa_mgf1_md,
EVP_PKEY_CTX_get_rsa_mgf1_md,
EVP_PKEY_CTX_get_rsa_mgf1_md_name,
EVP_PKEY_CTX_set_rsa_oaep_md_name,
EVP_PKEY_CTX_set_rsa_oaep_md,
EVP_PKEY_CTX_get_rsa_oaep_md,
EVP_PKEY_CTX_get_rsa_oaep_md_name,
EVP_PKEY_CTX_set0_rsa_oaep_label,
EVP_PKEY_CTX_get0_rsa_oaep_label,
EVP_PKEY_CTX_set_dsa_paramgen_bits,
EVP_PKEY_CTX_set_dsa_paramgen_q_bits,
EVP_PKEY_CTX_set_dsa_paramgen_md,
EVP_PKEY_CTX_set_dsa_paramgen_md_props,
EVP_PKEY_CTX_set_dsa_paramgen_gindex,
EVP_PKEY_CTX_set_dsa_paramgen_type,
EVP_PKEY_CTX_set_dsa_paramgen_seed,
EVP_PKEY_CTX_set_dh_paramgen_prime_len,
EVP_PKEY_CTX_set_dh_paramgen_subprime_len,
EVP_PKEY_CTX_set_dh_paramgen_generator,
EVP_PKEY_CTX_set_dh_paramgen_type,
EVP_PKEY_CTX_set_dh_paramgen_gindex,
EVP_PKEY_CTX_set_dh_paramgen_seed,
EVP_PKEY_CTX_set_dh_rfc5114,
EVP_PKEY_CTX_set_dhx_rfc5114,
EVP_PKEY_CTX_set_dh_pad,
EVP_PKEY_CTX_set_dh_nid,
EVP_PKEY_CTX_set_dh_kdf_type,
EVP_PKEY_CTX_get_dh_kdf_type,
EVP_PKEY_CTX_set0_dh_kdf_oid,
EVP_PKEY_CTX_get0_dh_kdf_oid,
EVP_PKEY_CTX_set_dh_kdf_md,
EVP_PKEY_CTX_get_dh_kdf_md,
EVP_PKEY_CTX_set_dh_kdf_outlen,
EVP_PKEY_CTX_get_dh_kdf_outlen,
EVP_PKEY_CTX_set0_dh_kdf_ukm,
EVP_PKEY_CTX_get0_dh_kdf_ukm,
EVP_PKEY_CTX_set_ec_paramgen_curve_nid,
EVP_PKEY_CTX_set_ec_param_enc,
EVP_PKEY_CTX_set_ecdh_cofactor_mode,
EVP_PKEY_CTX_get_ecdh_cofactor_mode,
EVP_PKEY_CTX_set_ecdh_kdf_type,
EVP_PKEY_CTX_get_ecdh_kdf_type,
EVP_PKEY_CTX_set_ecdh_kdf_md,
EVP_PKEY_CTX_get_ecdh_kdf_md,
EVP_PKEY_CTX_set_ecdh_kdf_outlen,
EVP_PKEY_CTX_get_ecdh_kdf_outlen,
EVP_PKEY_CTX_set0_ecdh_kdf_ukm,
EVP_PKEY_CTX_get0_ecdh_kdf_ukm,
EVP_PKEY_CTX_set1_id, EVP_PKEY_CTX_get1_id, EVP_PKEY_CTX_get1_id_len
- algorithm specific control operations
=head1 SYNOPSIS
#include <openssl/evp.h>
int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype,
int cmd, int p1, void *p2);
int EVP_PKEY_CTX_ctrl_uint64(EVP_PKEY_CTX *ctx, int keytype, int optype,
int cmd, uint64_t value);
int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
const char *value);
int EVP_PKEY_CTX_md(EVP_PKEY_CTX *ctx, int optype, int cmd, const char *md);
int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **pmd);
int EVP_PKEY_CTX_set_mac_key(EVP_PKEY_CTX *ctx, const unsigned char *key,
int len);
int EVP_PKEY_CTX_set_group_name(EVP_PKEY_CTX *ctx, const char *name);
int EVP_PKEY_CTX_get_group_name(EVP_PKEY_CTX *ctx, char *name, size_t namelen);
#include <openssl/rsa.h>
int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad);
int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad);
int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen);
int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen);
int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int mbits);
int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);
int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes);
int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
const char *mdprops);
int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
size_t namelen);
int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
const char *mdprops);
int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
size_t namelen);
int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char *label,
int len);
int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label);
#include <openssl/dsa.h>
int EVP_PKEY_CTX_set_dsa_paramgen_bits(EVP_PKEY_CTX *ctx, int nbits);
int EVP_PKEY_CTX_set_dsa_paramgen_q_bits(EVP_PKEY_CTX *ctx, int qbits);
int EVP_PKEY_CTX_set_dsa_paramgen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
int EVP_PKEY_CTX_set_dsa_paramgen_md_props(EVP_PKEY_CTX *ctx,
const char *md_name,
const char *md_properties);
int EVP_PKEY_CTX_set_dsa_paramgen_type(EVP_PKEY_CTX *ctx, const char *name);
int EVP_PKEY_CTX_set_dsa_paramgen_gindex(EVP_PKEY_CTX *ctx, int gindex);
int EVP_PKEY_CTX_set_dsa_paramgen_seed(EVP_PKEY_CTX *ctx,
const unsigned char *seed,
size_t seedlen);
#include <openssl/dh.h>
int EVP_PKEY_CTX_set_dh_paramgen_prime_len(EVP_PKEY_CTX *ctx, int len);
int EVP_PKEY_CTX_set_dh_paramgen_subprime_len(EVP_PKEY_CTX *ctx, int len);
int EVP_PKEY_CTX_set_dh_paramgen_generator(EVP_PKEY_CTX *ctx, int gen);
int EVP_PKEY_CTX_set_dh_paramgen_type(EVP_PKEY_CTX *ctx, int type);
int EVP_PKEY_CTX_set_dh_pad(EVP_PKEY_CTX *ctx, int pad);
int EVP_PKEY_CTX_set_dh_nid(EVP_PKEY_CTX *ctx, int nid);
int EVP_PKEY_CTX_set_dh_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
int EVP_PKEY_CTX_set_dhx_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
int EVP_PKEY_CTX_set_dh_paramgen_gindex(EVP_PKEY_CTX *ctx, int gindex);
int EVP_PKEY_CTX_set_dh_paramgen_seed(EVP_PKEY_CTX *ctx,
const unsigned char *seed,
size_t seedlen);
int EVP_PKEY_CTX_set_dh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
int EVP_PKEY_CTX_get_dh_kdf_type(EVP_PKEY_CTX *ctx);
int EVP_PKEY_CTX_set0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT *oid);
int EVP_PKEY_CTX_get0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT **oid);
int EVP_PKEY_CTX_set_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
int EVP_PKEY_CTX_get_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
int EVP_PKEY_CTX_set_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
int EVP_PKEY_CTX_get_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
int EVP_PKEY_CTX_set0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);
int EVP_PKEY_CTX_get0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);
#include <openssl/ec.h>
int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx, int nid);
int EVP_PKEY_CTX_set_ec_param_enc(EVP_PKEY_CTX *ctx, int param_enc);
int EVP_PKEY_CTX_set_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx, int cofactor_mode);
int EVP_PKEY_CTX_get_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx);
int EVP_PKEY_CTX_set_ecdh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
int EVP_PKEY_CTX_get_ecdh_kdf_type(EVP_PKEY_CTX *ctx);
int EVP_PKEY_CTX_set_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
int EVP_PKEY_CTX_get_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
int EVP_PKEY_CTX_set_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
int EVP_PKEY_CTX_get_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
int EVP_PKEY_CTX_set0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);
int EVP_PKEY_CTX_get0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);
int EVP_PKEY_CTX_set1_id(EVP_PKEY_CTX *ctx, void *id, size_t id_len);
int EVP_PKEY_CTX_get1_id(EVP_PKEY_CTX *ctx, void *id);
int EVP_PKEY_CTX_get1_id_len(EVP_PKEY_CTX *ctx, size_t *id_len);
=head1 DESCRIPTION
The function EVP_PKEY_CTX_ctrl() sends a control operation to the context
I<ctx>. The key type used must match I<keytype> if it is not -1. The parameter
I<optype> is a mask indicating which operations the control can be applied to.
The control command is indicated in I<cmd> and any additional arguments in
I<p1> and I<p2>.
For I<cmd> = B<EVP_PKEY_CTRL_SET_MAC_KEY>, I<p1> is the length of the MAC key,
and I<p2> is the MAC key. This is used by Poly1305, SipHash, HMAC and CMAC.
Applications will not normally call EVP_PKEY_CTX_ctrl() directly but will
instead call one of the algorithm specific macros below.
The function EVP_PKEY_CTX_ctrl_uint64() is a wrapper that directly passes a
uint64 value as I<p2> to EVP_PKEY_CTX_ctrl().
The function EVP_PKEY_CTX_ctrl_str() allows an application to send an algorithm
specific control operation to a context I<ctx> in string form. This is
intended to be used for options specified on the command line or in text
files. The commands supported are documented in the openssl utility
command line pages for the option I<-pkeyopt> which is supported by the
I<pkeyutl>, I<genpkey> and I<req> commands.
The function EVP_PKEY_CTX_md() sends a message digest control operation
to the context I<ctx>. The message digest is specified by its name I<md>.
The EVP_PKEY_CTX_set_signature_md() function sets the message digest type used
in a signature. It can be used in the RSA, DSA and ECDSA algorithms.
The EVP_PKEY_CTX_get_signature_md() function gets the message digest type used
in a signature. It can be used in the RSA, DSA and ECDSA algorithms.
All the remaining "functions" are implemented as macros.
Key generation typically involves setting up parameters to be used and
generating the private and public key data. Some algorithm implementations
allow private key data to be set explicitly using the EVP_PKEY_CTX_set_mac_key()
macro. In this case key generation is simply the process of setting up the
parameters for the key and then setting the raw key data to the value explicitly
provided by that macro. Normally applications would call
L<EVP_PKEY_new_raw_private_key(3)> or similar functions instead of this macro.
The EVP_PKEY_CTX_set_mac_key() macro can be used with any of the algorithms
supported by the L<EVP_PKEY_new_raw_private_key(3)> function.
EVP_PKEY_CTX_set_group_name() sets the group name to I<name> for parameter and
key generation. For example for EC keys this will set the curve name and for
DH keys it will set the name of the finite field group.
EVP_PKEY_CTX_get_group_name() finds the group name that's currently
set with I<ctx>, and writes it to the location that I<name> points at, as long
as its size I<namelen> is large enough to store that name, including a
terminating NUL byte.
=head2 RSA parameters
The EVP_PKEY_CTX_set_rsa_padding() function sets the RSA padding mode for I<ctx>.
The I<pad> parameter can take the value B<RSA_PKCS1_PADDING> for PKCS#1
padding, B<RSA_SSLV23_PADDING> for SSLv23 padding, B<RSA_NO_PADDING> for
no padding, B<RSA_PKCS1_OAEP_PADDING> for OAEP padding (encrypt and
decrypt only), B<RSA_X931_PADDING> for X9.31 padding (signature operations
only), B<RSA_PKCS1_PSS_PADDING> (sign and verify only) and
B<RSA_PKCS1_WITH_TLS_PADDING> for TLS RSA ClientKeyExchange message padding
(decryption only).
Two RSA padding modes behave differently if EVP_PKEY_CTX_set_signature_md()
is used. If this macro is called for PKCS#1 padding the plaintext buffer is
an actual digest value and is encapsulated in a DigestInfo structure according
to PKCS#1 when signing and this structure is expected (and stripped off) when
verifying. If this control is not used with RSA and PKCS#1 padding then the
supplied data is used directly and not encapsulated. In the case of X9.31
padding for RSA the algorithm identifier byte is added or checked and removed
if this control is called. If it is not called then the first byte of the plaintext
buffer is expected to be the algorithm identifier byte.
The EVP_PKEY_CTX_get_rsa_padding() function gets the RSA padding mode for I<ctx>.
The EVP_PKEY_CTX_set_rsa_pss_saltlen() function sets the RSA PSS salt
length to I<saltlen>. As its name implies it is only supported for PSS
padding. If this function is not called then the maximum salt length
is used when signing and auto detection when verifying. Three special
values are supported:
=over 4
=item B<RSA_PSS_SALTLEN_DIGEST>
sets the salt length to the digest length.
=item B<RSA_PSS_SALTLEN_MAX>
sets the salt length to the maximum permissible value.
=item B<RSA_PSS_SALTLEN_AUTO>
causes the salt length to be automatically determined based on the
B<PSS> block structure when verifying. When signing, it has the same
meaning as B<RSA_PSS_SALTLEN_MAX>.
=back
The EVP_PKEY_CTX_get_rsa_pss_saltlen() function gets the RSA PSS salt length
for I<ctx>. The padding mode must already have been set to
B<RSA_PKCS1_PSS_PADDING>.
The EVP_PKEY_CTX_set_rsa_keygen_bits() macro sets the RSA key length for
RSA key generation to I<bits>. If not specified 2048 bits is used.
The EVP_PKEY_CTX_set_rsa_keygen_pubexp() macro sets the public exponent value
for RSA key generation to I<pubexp>. Currently it should be an odd integer. The
I<pubexp> pointer is used internally by this function so it should not be
modified or freed after the call. If not specified 65537 is used.
The EVP_PKEY_CTX_set_rsa_keygen_primes() macro sets the number of primes for
RSA key generation to I<primes>. If not specified 2 is used.
The EVP_PKEY_CTX_set_rsa_mgf1_md_name() function sets the MGF1 digest for RSA
padding schemes to the digest named I<mdname>. If the RSA algorithm
implementation for the selected provider supports it then the digest will be
fetched using the properties I<mdprops>. If not explicitly set the signing
digest is used. The padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING>
or B<RSA_PKCS1_PSS_PADDING>.
The EVP_PKEY_CTX_set_rsa_mgf1_md() function does the same as
EVP_PKEY_CTX_set_rsa_mgf1_md_name() except that the name of the digest is
inferred from the supplied I<md> and it is not possible to specify any
properties.
The EVP_PKEY_CTX_get_rsa_mgf1_md_name() function gets the name of the MGF1
digest algorithm for I<ctx>. If not explicitly set the signing digest is used.
The padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING> or
B<RSA_PKCS1_PSS_PADDING>.
The EVP_PKEY_CTX_get_rsa_mgf1_md() function does the same as
EVP_PKEY_CTX_get_rsa_mgf1_md_name() except that it returns a pointer to an
EVP_MD object instead. Note that only known, built-in EVP_MD objects will be
returned. The EVP_MD object may be NULL if the digest is not one of these (such
as a digest only implemented in a third party provider).
The EVP_PKEY_CTX_set_rsa_oaep_md_name() function sets the message digest type
used in RSA OAEP to the digest named I<mdname>. If the RSA algorithm
implementation for the selected provider supports it then the digest will be
fetched using the properties I<mdprops>. The padding mode must have been set to
B<RSA_PKCS1_OAEP_PADDING>.
The EVP_PKEY_CTX_set_rsa_oaep_md() function does the same as
EVP_PKEY_CTX_set_rsa_oaep_md_name() except that the name of the digest is
inferred from the supplied I<md> and it is not possible to specify any
properties.
The EVP_PKEY_CTX_get_rsa_oaep_md_name() function gets the message digest
algorithm name used in RSA OAEP and stores it in the buffer I<name> which is of
size I<namelen>. The padding mode must have been set to
B<RSA_PKCS1_OAEP_PADDING>. The buffer should be sufficiently large for any
expected digest algorithm names or the function will fail.
The EVP_PKEY_CTX_get_rsa_oaep_md() function does the same as
EVP_PKEY_CTX_get_rsa_oaep_md_name() except that it returns a pointer to an
EVP_MD object instead. Note that only known, built-in EVP_MD objects will be
returned. The EVP_MD object may be NULL if the digest is not one of these (such
as a digest only implemented in a third party provider).
The EVP_PKEY_CTX_set0_rsa_oaep_label() function sets the RSA OAEP label to
I<label> and its length to I<len>. If I<label> is NULL or I<len> is 0,
the label is cleared. The library takes ownership of the label so the
caller should not free the original memory pointed to by I<label>.
The padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING>.
The EVP_PKEY_CTX_get0_rsa_oaep_label() function gets the RSA OAEP label to
I<label>. The return value is the label length. The padding mode
must have been set to B<RSA_PKCS1_OAEP_PADDING>. The resulting pointer is owned
by the library and should not be freed by the caller.
B<RSA_PKCS1_WITH_TLS_PADDING> is used when decrypting an RSA encrypted TLS
pre-master secret in a TLS ClientKeyExchange message. It is the same as
RSA_PKCS1_PADDING except that it additionally verifies that the result is the
correct length and the first two bytes are the protocol version initially
requested by the client. If the encrypted content is publicly invalid then the
decryption will fail. However, if the padding checks fail then decryption will
still appear to succeed but a random TLS premaster secret will be returned
instead. This padding mode accepts two parameters which can be set using the
L<EVP_PKEY_CTX_set_params(3)> function. These are
OSSL_ASYM_CIPHER_PARAM_TLS_CLIENT_VERSION and
OSSL_ASYM_CIPHER_PARAM_TLS_NEGOTIATED_VERSION, both of which are expected to be
unsigned integers. Normally only the first of these will be set and represents
the TLS protocol version that was first requested by the client (e.g. 0x0303 for
TLSv1.2, 0x0302 for TLSv1.1 etc). Historically some buggy clients would use the
negotiated protocol version instead of the protocol version first requested. If
this behaviour should be tolerated then
OSSL_ASYM_CIPHER_PARAM_TLS_NEGOTIATED_VERSION should be set to the actual
negotiated protocol version. Otherwise it should be left unset.
=head2 DSA parameters
EVP_PKEY_CTX_set_dsa_paramgen_bits() sets the number of bits used for DSA
parameter generation to B<nbits>. If not specified, 2048 is used.
EVP_PKEY_CTX_set_dsa_paramgen_q_bits() sets the number of bits in the subprime
parameter I<q> for DSA parameter generation to I<qbits>. If not specified, 224
is used. If a digest function is specified below, this parameter is ignored and
instead, the number of bits in I<q> matches the size of the digest.
EVP_PKEY_CTX_set_dsa_paramgen_md() sets the digest function used for DSA
parameter generation to I<md>. If not specified, one of SHA-1, SHA-224, or
SHA-256 is selected to match the bit length of I<q> above.
EVP_PKEY_CTX_set_dsa_paramgen_md_props() sets the digest function used for DSA
parameter generation using I<md_name> and I<md_properties> to retrieve the
digest from a provider.
If not specified, I<md_name> will be set to one of SHA-1, SHA-224, or
SHA-256 depending on the bit length of I<q> above. I<md_properties> is a
property query string that has a default value of '' if not specified.
EVP_PKEY_CTX_set_dsa_paramgen_gindex() sets the I<gindex> used by the generator
G. The default value is -1 which uses unverifiable g, otherwise a positive value
uses verifiable g. This value must be saved if key validation of g is required,
since it is not part of a persisted key.
EVP_PKEY_CTX_set_dsa_paramgen_seed() sets the I<seed> to use for generation
rather than using a randomly generated value for the seed. This is useful for
testing purposes only and can fail if the seed does not produce primes for both
p & q on its first iteration. This value must be saved if key validation of
p, q, and verifiable g are required, since it is not part of a persisted key.
EVP_PKEY_CTX_set_dsa_paramgen_type() sets the generation type to use FIPS186-4
generation if I<name> is "fips186_4", or FIPS186-2 generation if I<name> is
"fips186_2". The default value is "fips186_4".
=head2 DH parameters
The EVP_PKEY_CTX_set_dh_paramgen_prime_len() macro sets the length of the DH
prime parameter I<p> for DH parameter generation. If this macro is not called
then 2048 is used. Only accepts lengths greater than or equal to 256.
The EVP_PKEY_CTX_set_dh_paramgen_subprime_len() macro sets the length of the DH
optional subprime parameter I<q> for DH parameter generation. The default is
256 if the prime is at least 2048 bits long or 160 otherwise. The DH
paramgen type must have been set to "fips186_4".
The EVP_PKEY_CTX_set_dh_paramgen_generator() macro sets DH generator to I<gen>
for DH parameter generation. If not specified 2 is used.
The EVP_PKEY_CTX_set_dh_paramgen_type() macro sets the key type for DH
parameter generation. The supported parameters are:
=over 4
=item B<DH_PARAMGEN_TYPE_GROUP>
Use a named group. If only the safe prime parameter I<p> is set this can be
used to select a ffdhe safe prime group of the correct size.
=item B<DH_PARAMGEN_TYPE_FIPS_186_4>
FIPS186-4 FFC parameter generator.
=item B<DH_PARAMGEN_TYPE_FIPS_186_2>
FIPS186-2 FFC parameter generator (X9.42 DH).
=item B<DH_PARAMGEN_TYPE_GENERATOR>
Uses a safe prime generator g (PKCS#3 format).
=back
The default is B<DH_PARAMGEN_TYPE_GENERATOR>.
EVP_PKEY_CTX_set_dh_paramgen_gindex() sets the I<gindex> used by the generator G.
The default value is -1 which uses unverifiable g, otherwise a positive value
uses verifiable g. This value must be saved if key validation of g is required,
since it is not part of a persisted key.
EVP_PKEY_CTX_set_dh_paramgen_seed() sets the I<seed> to use for generation
rather than using a randomly generated value for the seed. This is useful for
testing purposes only and can fail if the seed does not produce primes for both
p & q on its first iteration. This value must be saved if key validation of p, q,
and verifiable g are required, since it is not part of a persisted key.
The EVP_PKEY_CTX_set_dh_pad() function sets the DH padding mode.
If I<pad> is 1 the shared secret is padded with zeros up to the size of the DH
prime I<p>.
If I<pad> is zero (the default) then no padding is performed.
EVP_PKEY_CTX_set_dh_nid() sets the DH parameters to values corresponding to
I<nid> as defined in RFC7919 or RFC3526. The I<nid> parameter must be
B<NID_ffdhe2048>, B<NID_ffdhe3072>, B<NID_ffdhe4096>, B<NID_ffdhe6144>,
B<NID_ffdhe8192>, B<NID_modp_1536>, B<NID_modp_2048>, B<NID_modp_3072>,
B<NID_modp_4096>, B<NID_modp_6144>, B<NID_modp_8192> or B<NID_undef> to clear
the stored value. This macro can be called during parameter or key generation.
The nid parameter and the rfc5114 parameter are mutually exclusive.
The EVP_PKEY_CTX_set_dh_rfc5114() and EVP_PKEY_CTX_set_dhx_rfc5114() macros are
synonymous. They set the DH parameters to the values defined in RFC5114. The
I<rfc5114> parameter must be 1, 2 or 3 corresponding to RFC5114 sections
2.1, 2.2 and 2.3. or 0 to clear the stored value. This macro can be called
during parameter generation. The I<ctx> must have a key type of
B<EVP_PKEY_DHX>.
The rfc5114 parameter and the nid parameter are mutually exclusive.
=head2 DH key derivation function parameters
Note that all of the following functions require that the I<ctx> parameter has
a private key type of B<EVP_PKEY_DHX>. When using key derivation, the output of
EVP_PKEY_derive() is the output of the KDF instead of the DH shared secret.
The KDF output is typically used as a Key Encryption Key (KEK) that in turn
encrypts a Content Encryption Key (CEK).
EVP_PKEY_CTX_set_dh_kdf_type() sets the key derivation function type to I<kdf>
for DH key derivation. Possible values are B<EVP_PKEY_DH_KDF_NONE> and
B<EVP_PKEY_DH_KDF_X9_42> which uses the key derivation specified in RFC2631
(based on the keying algorithm described in X9.42). When using key derivation,
the I<kdf_oid>, I<kdf_md> and I<kdf_outlen> parameters must also be specified.
EVP_PKEY_CTX_get_dh_kdf_type() gets the key derivation function type for I<ctx>
used for DH key derivation. Possible values are B<EVP_PKEY_DH_KDF_NONE> and
B<EVP_PKEY_DH_KDF_X9_42>.
EVP_PKEY_CTX_set0_dh_kdf_oid() sets the key derivation function object
identifier to I<oid> for DH key derivation. This OID should identify the
algorithm to be used with the Content Encryption Key.
The library takes ownership of the object identifier so the caller should not
free the original memory pointed to by I<oid>.
EVP_PKEY_CTX_get0_dh_kdf_oid() gets the key derivation function oid for I<ctx>
used for DH key derivation. The resulting pointer is owned by the library and
should not be freed by the caller.
EVP_PKEY_CTX_set_dh_kdf_md() sets the key derivation function message digest to
I<md> for DH key derivation. Note that RFC2631 specifies that this digest should
be SHA1 but OpenSSL tolerates other digests.
EVP_PKEY_CTX_get_dh_kdf_md() gets the key derivation function message digest for
I<ctx> used for DH key derivation.
EVP_PKEY_CTX_set_dh_kdf_outlen() sets the key derivation function output length
to I<len> for DH key derivation.
EVP_PKEY_CTX_get_dh_kdf_outlen() gets the key derivation function output length
for I<ctx> used for DH key derivation.
EVP_PKEY_CTX_set0_dh_kdf_ukm() sets the user key material to I<ukm> and its
length to I<len> for DH key derivation. This parameter is optional and
corresponds to the partyAInfo field in RFC2631 terms. The specification
requires that it is 512 bits long but this is not enforced by OpenSSL.
The library takes ownership of the user key material so the caller should not
free the original memory pointed to by I<ukm>.
EVP_PKEY_CTX_get0_dh_kdf_ukm() gets the user key material for I<ctx>.
The return value is the user key material length. The resulting pointer is owned
by the library and should not be freed by the caller.
=head2 EC parameters
Use EVP_PKEY_CTX_set_group_name() (described above) to set the curve name to
I<name> for parameter and key generation.
EVP_PKEY_CTX_set_ec_paramgen_curve_nid() does the same as
EVP_PKEY_CTX_set_group_name(), but is specific to EC and uses a I<nid> rather
than a name string.
For EC parameter generation, one of EVP_PKEY_CTX_set_group_name()
or EVP_PKEY_CTX_set_ec_paramgen_curve_nid() must be called or an error occurs
because there is no default curve.
These function can also be called to set the curve explicitly when
generating an EC key.
EVP_PKEY_CTX_get_group_name() (described above) can be used to obtain the curve
name that's currently set with I<ctx>.
EVP_PKEY_CTX_set_ec_param_enc() sets the EC parameter encoding to I<param_enc>
when generating EC parameters or an EC key. The encoding can be
B<OPENSSL_EC_EXPLICIT_CURVE> for explicit parameters (the default in versions
of OpenSSL before 1.1.0) or B<OPENSSL_EC_NAMED_CURVE> to use named curve form.
For maximum compatibility the named curve form should be used. Note: the
B<OPENSSL_EC_NAMED_CURVE> value was added in OpenSSL 1.1.0; previous
versions should use 0 instead.
=head2 ECDH parameters
The EVP_PKEY_CTX_set_ecdh_cofactor_mode() macro sets the cofactor mode to
I<cofactor_mode> for ECDH key derivation. Possible values are 1 to enable
cofactor key derivation, 0 to disable it and -1 to clear the stored cofactor
mode and fallback to the private key cofactor mode.
The EVP_PKEY_CTX_get_ecdh_cofactor_mode() macro returns the cofactor mode for
I<ctx> used for ECDH key derivation. Possible values are 1 when cofactor key
derivation is enabled and 0 otherwise.
=head2 ECDH key derivation function parameters
The EVP_PKEY_CTX_set_ecdh_kdf_type() macro sets the key derivation function type
to I<kdf> for ECDH key derivation. Possible values are B<EVP_PKEY_ECDH_KDF_NONE>
and B<EVP_PKEY_ECDH_KDF_X9_63> which uses the key derivation specified in X9.63.
When using key derivation, the I<kdf_md> and I<kdf_outlen> parameters must
also be specified.
The EVP_PKEY_CTX_get_ecdh_kdf_type() macro returns the key derivation function
type for I<ctx> used for ECDH key derivation. Possible values are
B<EVP_PKEY_ECDH_KDF_NONE> and B<EVP_PKEY_ECDH_KDF_X9_63>.
The EVP_PKEY_CTX_set_ecdh_kdf_md() macro sets the key derivation function
message digest to I<md> for ECDH key derivation. Note that X9.63 specifies
that this digest should be SHA1 but OpenSSL tolerates other digests.
The EVP_PKEY_CTX_get_ecdh_kdf_md() macro gets the key derivation function
message digest for I<ctx> used for ECDH key derivation.
The EVP_PKEY_CTX_set_ecdh_kdf_outlen() macro sets the key derivation function
output length to I<len> for ECDH key derivation.
The EVP_PKEY_CTX_get_ecdh_kdf_outlen() macro gets the key derivation function
output length for I<ctx> used for ECDH key derivation.
The EVP_PKEY_CTX_set0_ecdh_kdf_ukm() macro sets the user key material to I<ukm>
for ECDH key derivation. This parameter is optional and corresponds to the
shared info in X9.63 terms. The library takes ownership of the user key material
so the caller should not free the original memory pointed to by I<ukm>.
The EVP_PKEY_CTX_get0_ecdh_kdf_ukm() macro gets the user key material for I<ctx>.
The return value is the user key material length. The resulting pointer is owned
by the library and should not be freed by the caller.
=head2 Other parameters
The EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and EVP_PKEY_CTX_get1_id_len()
macros are used to manipulate the special identifier field for specific signature
algorithms such as SM2. The EVP_PKEY_CTX_set1_id() sets an ID pointed by I<id> with
the length I<id_len> to the library. The library takes a copy of the id so that
the caller can safely free the original memory pointed to by I<id>. The
EVP_PKEY_CTX_get1_id_len() macro returns the length of the ID set via a previous
call to EVP_PKEY_CTX_set1_id(). The length is usually used to allocate adequate
memory for further calls to EVP_PKEY_CTX_get1_id(). The EVP_PKEY_CTX_get1_id()
macro returns the previously set ID value to caller in I<id>. The caller should
allocate adequate memory space for the I<id> before calling EVP_PKEY_CTX_get1_id().
=head1 RETURN VALUES
All other functions and macros described on this page return a positive value
for success and 0 or a negative value for failure. In particular a return value
of -2 indicates the operation is not supported by the public key algorithm.
=head1 SEE ALSO
L<EVP_PKEY_CTX_set_params(3)>,
L<EVP_PKEY_CTX_new(3)>,
L<EVP_PKEY_encrypt(3)>,
L<EVP_PKEY_decrypt(3)>,
L<EVP_PKEY_sign(3)>,
L<EVP_PKEY_verify(3)>,
L<EVP_PKEY_verify_recover(3)>,
L<EVP_PKEY_derive(3)>,
L<EVP_PKEY_keygen(3)>
=head1 HISTORY
EVP_PKEY_CTX_get_signature_md(), EVP_PKEY_CTX_set_signature_md(),
EVP_PKEY_CTX_set_dh_pad(), EVP_PKEY_CTX_set_rsa_padding(),
EVP_PKEY_CTX_get_rsa_padding(), EVP_PKEY_CTX_get_rsa_mgf1_md(),
EVP_PKEY_CTX_set_rsa_mgf1_md(), EVP_PKEY_CTX_set_rsa_oaep_md(),
EVP_PKEY_CTX_get_rsa_oaep_md(), EVP_PKEY_CTX_set0_rsa_oaep_label(),
EVP_PKEY_CTX_get0_rsa_oaep_label(), EVP_PKEY_CTX_set_rsa_pss_saltlen(),
EVP_PKEY_CTX_get_rsa_pss_saltlen(), EVP_PKEY_CTX_set_dsa_paramgen_bits(),
EVP_PKEY_CTX_set_dsa_paramgen_q_bits(), EVP_PKEY_CTX_set_dsa_paramgen_md().
EVP_PKEY_CTX_set_dh_kdf_type(), EVP_PKEY_CTX_get_dh_kdf_type(),
EVP_PKEY_CTX_set0_dh_kdf_oid(), EVP_PKEY_CTX_get0_dh_kdf_oid(),
EVP_PKEY_CTX_set_dh_kdf_md(), EVP_PKEY_CTX_get_dh_kdf_md(),
EVP_PKEY_CTX_set_dh_kdf_outlen(), EVP_PKEY_CTX_get_dh_kdf_outlen(),
EVP_PKEY_CTX_set0_dh_kdf_ukm(), EVP_PKEY_CTX_get0_dh_kdf_ukm() and
EVP_PKEY_CTX_set_ec_param_enc(), EVP_PKEY_CTX_set_ec_paramgen_curve_nid()
were macros in OpenSSL 1.1.1 and below.
From OpenSSL 3.0 they are functions.
EVP_PKEY_CTX_get_rsa_oaep_md_name(), EVP_PKEY_CTX_get_rsa_mgf1_md_name(),
EVP_PKEY_CTX_set_rsa_mgf1_md_name(), EVP_PKEY_CTX_set_rsa_oaep_md_name(),
EVP_PKEY_CTX_set_dsa_paramgen_md_props(), EVP_PKEY_CTX_set_dsa_paramgen_gindex(),
EVP_PKEY_CTX_set_dsa_paramgen_type(), EVP_PKEY_CTX_set_dsa_paramgen_seed(),
EVP_PKEY_CTX_set_group_name() and EVP_PKEY_CTX_get_group_name()
were added in OpenSSL 3.0.
The EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and
EVP_PKEY_CTX_get1_id_len() macros were added in 1.1.1, other functions were
added in OpenSSL 1.0.0.
=head1 COPYRIGHT
Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved.
Licensed under the Apache License 2.0 (the "License"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file LICENSE in the source distribution or at
L<https://www.openssl.org/source/license.html>.
=cut
|