summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--.github/codeql-queries/UninitializedVariableWithCleanup.ql2
-rw-r--r--docs/BOOT_LOADER_INTERFACE.md9
-rw-r--r--docs/RANDOM_SEEDS.md51
-rw-r--r--man/systemd-boot.xml22
-rw-r--r--src/basic/random-util.h1
-rw-r--r--src/boot/bootctl.c30
-rw-r--r--src/boot/efi/efi-string.h7
-rw-r--r--src/boot/efi/random-seed.c299
-rw-r--r--src/boot/efi/util.h25
-rw-r--r--src/core/efi-random.c82
-rw-r--r--src/core/efi-random.h2
-rw-r--r--src/core/main.c4
-rw-r--r--src/random-seed/random-seed.c122
-rw-r--r--units/systemd-boot-system-token.service3
14 files changed, 355 insertions, 304 deletions
diff --git a/.github/codeql-queries/UninitializedVariableWithCleanup.ql b/.github/codeql-queries/UninitializedVariableWithCleanup.ql
index e514111f28..dadc6cb1b5 100644
--- a/.github/codeql-queries/UninitializedVariableWithCleanup.ql
+++ b/.github/codeql-queries/UninitializedVariableWithCleanup.ql
@@ -20,7 +20,7 @@ import semmle.code.cpp.controlflow.StackVariableReachability
* since they don't do anything illegal even when the variable is uninitialized
*/
predicate cleanupFunctionDenyList(string fun) {
- fun = "erase_char"
+ fun = "erase_char" or fun = "erase_obj"
}
/**
diff --git a/docs/BOOT_LOADER_INTERFACE.md b/docs/BOOT_LOADER_INTERFACE.md
index fc9336085b..5be4d1ad17 100644
--- a/docs/BOOT_LOADER_INTERFACE.md
+++ b/docs/BOOT_LOADER_INTERFACE.md
@@ -80,12 +80,6 @@ variables. All EFI variables use the vendor UUID
* `1 << 5` → The boot loader supports looking for boot menu entries in the Extended Boot Loader Partition.
* `1 << 6` → The boot loader supports passing a random seed to the OS.
-* The EFI variable `LoaderRandomSeed` contains a binary random seed if set. It
- is set by the boot loader to pass an entropy seed read from the ESP to the OS.
- The system manager then credits this seed to the kernel's entropy pool. It is
- the responsibility of the boot loader to ensure the quality and integrity of
- the random seed.
-
* The EFI variable `LoaderSystemToken` contains binary random data,
persistently set by the OS installer. Boot loaders that support passing
random seeds to the OS should use this data and combine it with the random
@@ -107,8 +101,7 @@ that directory is empty, and only if no other file systems are mounted
there. The `systemctl reboot --boot-loader-entry=…` and `systemctl reboot
--boot-loader-menu=…` commands rely on the `LoaderFeatures` ,
`LoaderConfigTimeoutOneShot`, `LoaderEntries`, `LoaderEntryOneShot`
-variables. `LoaderRandomSeed` is read by PID during early boot and credited to
-the kernel's random pool.
+variables.
## Boot Loader Entry Identifiers
diff --git a/docs/RANDOM_SEEDS.md b/docs/RANDOM_SEEDS.md
index 3dc27f5552..b7240f0d89 100644
--- a/docs/RANDOM_SEEDS.md
+++ b/docs/RANDOM_SEEDS.md
@@ -197,28 +197,39 @@ boot, in order to ensure the entropy pool is filled up quickly.
generate sufficient data), to generate a new random seed file to store in
the ESP as well as a random seed to pass to the OS kernel. The new random
seed file for the ESP is then written to the ESP, ensuring this is completed
- before the OS is invoked. Very early during initialization PID 1 will read
- the random seed provided in the EFI variable and credit it fully to the
- kernel's entropy pool.
-
- This mechanism is able to safely provide an initialized entropy pool already
- in the `initrd` and guarantees that different seeds are passed from the boot
- loader to the OS on every boot (in a way that does not allow regeneration of
- an old seed file from a new seed file). Moreover, when an OS image is
- replicated between multiple images and the random seed is not reset, this
- will still result in different random seeds being passed to the OS, as the
- per-machine 'system token' is specific to the physical host, and not
- included in OS disk images. If the 'system token' is properly initialized
- and kept sufficiently secret it should not be possible to regenerate the
- entropy pool of different machines, even if this seed is the only source of
- entropy.
+ before the OS is invoked.
+
+ The kernel then reads the random seed that the boot loader passes to it, via
+ the EFI configuration table entry, `LINUX_EFI_RANDOM_SEED_TABLE_GUID`
+ (1ce1e5bc-7ceb-42f2-81e5-8aadf180f57b), which is allocated with pool memory
+ of type `EfiACPIReclaimMemory`. Its contents have the form:
+ ```
+ struct linux_efi_random_seed {
+ u32 size; // of the 'seed' array in bytes
+ u8 seed[];
+ };
+ ```
+ The size field is generally set to 32 bytes, and the seed field includes a
+ hashed representation of any prior seed in `LINUX_EFI_RANDOM_SEED_TABLE_GUID`
+ together with the new seed.
+
+ This mechanism is able to safely provide an initialized entropy pool before
+ userspace even starts and guarantees that different seeds are passed from
+ the boot loader to the OS on every boot (in a way that does not allow
+ regeneration of an old seed file from a new seed file). Moreover, when an OS
+ image is replicated between multiple images and the random seed is not
+ reset, this will still result in different random seeds being passed to the
+ OS, as the per-machine 'system token' is specific to the physical host, and
+ not included in OS disk images. If the 'system token' is properly
+ initialized and kept sufficiently secret it should not be possible to
+ regenerate the entropy pool of different machines, even if this seed is the
+ only source of entropy.
Note that the writes to the ESP needed to maintain the random seed should be
- minimal. The size of the random seed file is directly derived from the Linux
- kernel's entropy pool size, which defaults to 512 bytes. This means updating
- the random seed in the ESP should be doable safely with a single sector
- write (since hard-disk sectors typically happen to be 512 bytes long, too),
- which should be safe even with FAT file system drivers built into
+ minimal. Because the size of the random seed file is generally set to 32 bytes,
+ updating the random seed in the ESP should be doable safely with a single
+ sector write (since hard-disk sectors typically happen to be 512 bytes long,
+ too), which should be safe even with FAT file system drivers built into
low-quality EFI firmwares.
As a special restriction: in virtualized environments PID 1 will refrain
diff --git a/man/systemd-boot.xml b/man/systemd-boot.xml
index 57b66803fa..f96c4c6512 100644
--- a/man/systemd-boot.xml
+++ b/man/systemd-boot.xml
@@ -436,28 +436,6 @@
</varlistentry>
<varlistentry>
- <term><varname>LoaderRandomSeed</varname></term>
-
- <listitem><para>A binary random seed <command>systemd-boot</command> may optionally pass to the
- OS. This is a volatile EFI variable that is hashed at boot from the combination of a random seed
- stored in the ESP (in <filename>/loader/random-seed</filename>) and a "system token" persistently
- stored in the EFI variable <varname>LoaderSystemToken</varname> (see below). During early OS boot the
- system manager reads this variable and passes it to the OS kernel's random pool, crediting the full
- entropy it contains. This is an efficient way to ensure the system starts up with a fully initialized
- kernel random pool — as early as the initrd phase. <command>systemd-boot</command> reads
- the random seed from the ESP, combines it with the "system token", and both derives a new random seed
- to update in-place the seed stored in the ESP, and the random seed to pass to the OS from it via
- SHA256 hashing in counter mode. This ensures that different physical systems that boot the same
- "golden" OS image — i.e. containing the same random seed file in the ESP — will still pass a
- different random seed to the OS. It is made sure the random seed stored in the ESP is fully
- overwritten before the OS is booted, to ensure different random seed data is used between subsequent
- boots.</para>
-
- <para>See <ulink url="https://systemd.io/RANDOM_SEEDS">Random Seeds</ulink> for
- further information.</para></listitem>
- </varlistentry>
-
- <varlistentry>
<term><varname>LoaderSystemToken</varname></term>
<listitem><para>A binary random data field, that is used for generating the random seed to pass to
diff --git a/src/basic/random-util.h b/src/basic/random-util.h
index 2d99807272..b1a4d10971 100644
--- a/src/basic/random-util.h
+++ b/src/basic/random-util.h
@@ -23,6 +23,7 @@ static inline uint32_t random_u32(void) {
/* Some limits on the pool sizes when we deal with the kernel random pool */
#define RANDOM_POOL_SIZE_MIN 32U
#define RANDOM_POOL_SIZE_MAX (10U*1024U*1024U)
+#define RANDOM_EFI_SEED_SIZE 32U
size_t random_pool_size(void);
diff --git a/src/boot/bootctl.c b/src/boot/bootctl.c
index 430887fe67..e04424b379 100644
--- a/src/boot/bootctl.c
+++ b/src/boot/bootctl.c
@@ -1886,8 +1886,6 @@ static int verb_status(int argc, char *argv[], void *userdata) {
printf("\n");
printf("%sRandom Seed:%s\n", ansi_underline(), ansi_normal());
- have = access(EFIVAR_PATH(EFI_LOADER_VARIABLE(LoaderRandomSeed)), F_OK) >= 0;
- printf(" Passed to OS: %s\n", yes_no(have));
have = access(EFIVAR_PATH(EFI_LOADER_VARIABLE(LoaderSystemToken)), F_OK) >= 0;
printf(" System Token: %s\n", have ? "set" : "not set");
@@ -1977,10 +1975,10 @@ static int verb_list(int argc, char *argv[], void *userdata) {
static int install_random_seed(const char *esp) {
_cleanup_(unlink_and_freep) char *tmp = NULL;
- _cleanup_free_ void *buffer = NULL;
+ unsigned char buffer[RANDOM_EFI_SEED_SIZE];
_cleanup_free_ char *path = NULL;
_cleanup_close_ int fd = -1;
- size_t sz, token_size;
+ size_t token_size;
ssize_t n;
int r;
@@ -1990,13 +1988,7 @@ static int install_random_seed(const char *esp) {
if (!path)
return log_oom();
- sz = random_pool_size();
-
- buffer = malloc(sz);
- if (!buffer)
- return log_oom();
-
- r = crypto_random_bytes(buffer, sz);
+ r = crypto_random_bytes(buffer, sizeof(buffer));
if (r < 0)
return log_error_errno(r, "Failed to acquire random seed: %m");
@@ -2017,10 +2009,10 @@ static int install_random_seed(const char *esp) {
return log_error_errno(fd, "Failed to open random seed file for writing: %m");
}
- n = write(fd, buffer, sz);
+ n = write(fd, buffer, sizeof(buffer));
if (n < 0)
return log_error_errno(errno, "Failed to write random seed file: %m");
- if ((size_t) n != sz)
+ if ((size_t) n != sizeof(buffer))
return log_error_errno(SYNTHETIC_ERRNO(EIO), "Short write while writing random seed file.");
if (rename(tmp, path) < 0)
@@ -2028,7 +2020,7 @@ static int install_random_seed(const char *esp) {
tmp = mfree(tmp);
- log_info("Random seed file %s successfully written (%zu bytes).", path, sz);
+ log_info("Random seed file %s successfully written (%zu bytes).", path, sizeof(buffer));
if (!arg_touch_variables)
return 0;
@@ -2080,16 +2072,16 @@ static int install_random_seed(const char *esp) {
if (r != -ENOENT)
return log_error_errno(r, "Failed to test system token validity: %m");
} else {
- if (token_size >= sz) {
+ if (token_size >= sizeof(buffer)) {
/* Let's avoid writes if we can, and initialize this only once. */
log_debug("System token already written, not updating.");
return 0;
}
- log_debug("Existing system token size (%zu) does not match our expectations (%zu), replacing.", token_size, sz);
+ log_debug("Existing system token size (%zu) does not match our expectations (%zu), replacing.", token_size, sizeof(buffer));
}
- r = crypto_random_bytes(buffer, sz);
+ r = crypto_random_bytes(buffer, sizeof(buffer));
if (r < 0)
return log_error_errno(r, "Failed to acquire random seed: %m");
@@ -2097,7 +2089,7 @@ static int install_random_seed(const char *esp) {
* and possibly get identification information or too much insight into the kernel's entropy pool
* state. */
RUN_WITH_UMASK(0077) {
- r = efi_set_variable(EFI_LOADER_VARIABLE(LoaderSystemToken), buffer, sz);
+ r = efi_set_variable(EFI_LOADER_VARIABLE(LoaderSystemToken), buffer, sizeof(buffer));
if (r < 0) {
if (!arg_graceful)
return log_error_errno(r, "Failed to write 'LoaderSystemToken' EFI variable: %m");
@@ -2107,7 +2099,7 @@ static int install_random_seed(const char *esp) {
else
log_warning_errno(r, "Unable to write 'LoaderSystemToken' EFI variable, ignoring: %m");
} else
- log_info("Successfully initialized system token in EFI variable with %zu bytes.", sz);
+ log_info("Successfully initialized system token in EFI variable with %zu bytes.", sizeof(buffer));
}
return 0;
diff --git a/src/boot/efi/efi-string.h b/src/boot/efi/efi-string.h
index 1ebd5fd6b7..d4d76a7c18 100644
--- a/src/boot/efi/efi-string.h
+++ b/src/boot/efi/efi-string.h
@@ -119,6 +119,13 @@ static inline void *mempcpy(void * restrict dest, const void * restrict src, siz
memcpy(dest, src, n);
return (uint8_t *) dest + n;
}
+
+static inline void explicit_bzero_safe(void *bytes, size_t len) {
+ if (!bytes || len == 0)
+ return;
+ memset(bytes, 0, len);
+ __asm__ __volatile__("": :"r"(bytes) :"memory");
+}
#else
/* For unit testing. */
int efi_memcmp(const void *p1, const void *p2, size_t n);
diff --git a/src/boot/efi/random-seed.c b/src/boot/efi/random-seed.c
index aea4f7e532..04bfd526f8 100644
--- a/src/boot/efi/random-seed.c
+++ b/src/boot/efi/random-seed.c
@@ -14,11 +14,24 @@
#define EFI_RNG_GUID &(const EFI_GUID) EFI_RNG_PROTOCOL_GUID
+struct linux_efi_random_seed {
+ uint32_t size;
+ uint8_t seed[];
+};
+
+#define LINUX_EFI_RANDOM_SEED_TABLE_GUID \
+ { 0x1ce1e5bc, 0x7ceb, 0x42f2, { 0x81, 0xe5, 0x8a, 0xad, 0xf1, 0x80, 0xf5, 0x7b } }
+
/* SHA256 gives us 256/8=32 bytes */
#define HASH_VALUE_SIZE 32
-static EFI_STATUS acquire_rng(UINTN size, void **ret) {
- _cleanup_free_ void *data = NULL;
+/* Linux's RNG is 256 bits, so let's provide this much */
+#define DESIRED_SEED_SIZE 32
+
+/* Some basic domain separation in case somebody uses this data elsewhere */
+#define HASH_LABEL "systemd-boot random seed label v1"
+
+static EFI_STATUS acquire_rng(void *ret, UINTN size) {
EFI_RNG_PROTOCOL *rng;
EFI_STATUS err;
@@ -32,126 +45,9 @@ static EFI_STATUS acquire_rng(UINTN size, void **ret) {
if (!rng)
return EFI_UNSUPPORTED;
- data = xmalloc(size);
-
- err = rng->GetRNG(rng, NULL, size, data);
+ err = rng->GetRNG(rng, NULL, size, ret);
if (err != EFI_SUCCESS)
return log_error_status_stall(err, L"Failed to acquire RNG data: %r", err);
-
- *ret = TAKE_PTR(data);
- return EFI_SUCCESS;
-}
-
-static void hash_once(
- const void *old_seed,
- const void *rng,
- UINTN size,
- const void *system_token,
- UINTN system_token_size,
- uint64_t uefi_monotonic_counter,
- UINTN counter,
- uint8_t ret[static HASH_VALUE_SIZE]) {
-
- /* This hashes together:
- *
- * 1. The contents of the old seed file
- * 2. Some random data acquired from the UEFI RNG (optional)
- * 3. Some 'system token' the installer installed as EFI variable (optional)
- * 4. The UEFI "monotonic counter" that increases with each boot
- * 5. A supplied counter value
- *
- * And writes the result to the specified buffer.
- */
-
- struct sha256_ctx hash;
-
- assert(old_seed);
- assert(system_token_size == 0 || system_token);
-
- sha256_init_ctx(&hash);
- sha256_process_bytes(old_seed, size, &hash);
- if (rng)
- sha256_process_bytes(rng, size, &hash);
- if (system_token_size > 0)
- sha256_process_bytes(system_token, system_token_size, &hash);
- sha256_process_bytes(&uefi_monotonic_counter, sizeof(uefi_monotonic_counter), &hash);
- sha256_process_bytes(&counter, sizeof(counter), &hash);
- sha256_finish_ctx(&hash, ret);
-}
-
-static EFI_STATUS hash_many(
- const void *old_seed,
- const void *rng,
- UINTN size,
- const void *system_token,
- UINTN system_token_size,
- uint64_t uefi_monotonic_counter,
- UINTN counter_start,
- UINTN n,
- void **ret) {
-
- _cleanup_free_ void *output = NULL;
-
- assert(old_seed);
- assert(system_token_size == 0 || system_token);
- assert(ret);
-
- /* Hashes the specified parameters in counter mode, generating n hash values, with the counter in the
- * range counter_start…counter_start+n-1. */
-
- output = xmalloc_multiply(HASH_VALUE_SIZE, n);
-
- for (UINTN i = 0; i < n; i++)
- hash_once(old_seed, rng, size,
- system_token, system_token_size,
- uefi_monotonic_counter,
- counter_start + i,
- (uint8_t*) output + (i * HASH_VALUE_SIZE));
-
- *ret = TAKE_PTR(output);
- return EFI_SUCCESS;
-}
-
-static EFI_STATUS mangle_random_seed(
- const void *old_seed,
- const void *rng,
- UINTN size,
- const void *system_token,
- UINTN system_token_size,
- uint64_t uefi_monotonic_counter,
- void **ret_new_seed,
- void **ret_for_kernel) {
-
- _cleanup_free_ void *new_seed = NULL, *for_kernel = NULL;
- EFI_STATUS err;
- UINTN n;
-
- assert(old_seed);
- assert(system_token_size == 0 || system_token);
- assert(ret_new_seed);
- assert(ret_for_kernel);
-
- /* This takes the old seed file contents, an (optional) random number acquired from the UEFI RNG, an
- * (optional) system 'token' installed once by the OS installer in an EFI variable, and hashes them
- * together in counter mode, generating a new seed (to replace the file on disk) and the seed for the
- * kernel. To keep things simple, the new seed and kernel data have the same size as the old seed and
- * RNG data. */
-
- n = (size + HASH_VALUE_SIZE - 1) / HASH_VALUE_SIZE;
-
- /* Begin hashing in counter mode at counter 0 for the new seed for the disk */
- err = hash_many(old_seed, rng, size, system_token, system_token_size, uefi_monotonic_counter, 0, n, &new_seed);
- if (err != EFI_SUCCESS)
- return err;
-
- /* Continue counting at 'n' for the seed for the kernel */
- err = hash_many(old_seed, rng, size, system_token, system_token_size, uefi_monotonic_counter, n, n, &for_kernel);
- if (err != EFI_SUCCESS)
- return err;
-
- *ret_new_seed = TAKE_PTR(new_seed);
- *ret_for_kernel = TAKE_PTR(for_kernel);
-
return EFI_SUCCESS;
}
@@ -163,6 +59,7 @@ static EFI_STATUS acquire_system_token(void **ret, UINTN *ret_size) {
assert(ret);
assert(ret_size);
+ *ret_size = 0;
err = efivar_get_raw(LOADER_GUID, L"LoaderSystemToken", &data, &size);
if (err != EFI_SUCCESS) {
if (err != EFI_NOT_FOUND)
@@ -221,31 +118,83 @@ static void validate_sha256(void) {
}
EFI_STATUS process_random_seed(EFI_FILE *root_dir, RandomSeedMode mode) {
- _cleanup_free_ void *seed = NULL, *new_seed = NULL, *rng = NULL, *for_kernel = NULL, *system_token = NULL;
+ _cleanup_erase_ uint8_t random_bytes[DESIRED_SEED_SIZE], hash_key[HASH_VALUE_SIZE];
+ _cleanup_free_ struct linux_efi_random_seed *new_seed_table = NULL;
+ struct linux_efi_random_seed *previous_seed_table = NULL;
+ _cleanup_free_ void *seed = NULL, *system_token = NULL;
_cleanup_(file_closep) EFI_FILE *handle = NULL;
- UINTN size, rsize, wsize, system_token_size = 0;
_cleanup_free_ EFI_FILE_INFO *info = NULL;
+ _cleanup_erase_ struct sha256_ctx hash;
uint64_t uefi_monotonic_counter = 0;
+ size_t size, rsize, wsize;
+ bool seeded_by_efi = false;
EFI_STATUS err;
+ EFI_TIME now;
assert(root_dir);
+ assert_cc(DESIRED_SEED_SIZE == HASH_VALUE_SIZE);
validate_sha256();
if (mode == RANDOM_SEED_OFF)
return EFI_NOT_FOUND;
- /* Let's better be safe than sorry, and for now disable this logic in SecureBoot mode, so that we
- * don't credit a random seed that is not authenticated. */
- if (secure_boot_enabled())
- return EFI_NOT_FOUND;
+ /* hash = LABEL || sizeof(input1) || input1 || ... || sizeof(inputN) || inputN */
+ sha256_init_ctx(&hash);
+
+ /* Some basic domain separation in case somebody uses this data elsewhere */
+ sha256_process_bytes(HASH_LABEL, sizeof(HASH_LABEL) - 1, &hash);
+
+ for (size_t i = 0; i < ST->NumberOfTableEntries; ++i)
+ if (memcmp(&(const EFI_GUID)LINUX_EFI_RANDOM_SEED_TABLE_GUID,
+ &ST->ConfigurationTable[i].VendorGuid, sizeof(EFI_GUID)) == 0) {
+ previous_seed_table = ST->ConfigurationTable[i].VendorTable;
+ break;
+ }
+ if (!previous_seed_table) {
+ size = 0;
+ sha256_process_bytes(&size, sizeof(size), &hash);
+ } else {
+ size = previous_seed_table->size;
+ seeded_by_efi = size >= DESIRED_SEED_SIZE;
+ sha256_process_bytes(&size, sizeof(size), &hash);
+ sha256_process_bytes(previous_seed_table->seed, size, &hash);
+
+ /* Zero and free the previous seed table only at the end after we've managed to install a new
+ * one, so that in case this function fails or aborts, Linux still receives whatever the
+ * previous bootloader chain set. So, the next line of this block is not an explicit_bzero()
+ * call. */
+ }
+
+ /* Request some random data from the UEFI RNG. We don't need this to work safely, but it's a good
+ * idea to use it because it helps us for cases where users mistakenly include a random seed in
+ * golden master images that are replicated many times. */
+ err = acquire_rng(random_bytes, sizeof(random_bytes));
+ if (err != EFI_SUCCESS) {
+ size = 0;
+ /* If we can't get any randomness from EFI itself, then we'll only be relying on what's in
+ * ESP. But ESP is mutable, so if secure boot is enabled, we probably shouldn't trust that
+ * alone, in which case we bail out early. */
+ if (!seeded_by_efi && secure_boot_enabled())
+ return EFI_NOT_FOUND;
+ } else {
+ seeded_by_efi = true;
+ size = sizeof(random_bytes);
+ }
+ sha256_process_bytes(&size, sizeof(size), &hash);
+ sha256_process_bytes(random_bytes, size, &hash);
/* Get some system specific seed that the installer might have placed in an EFI variable. We include
* it in our hash. This is protection against golden master image sloppiness, and it remains on the
* system, even when disk images are duplicated or swapped out. */
- err = acquire_system_token(&system_token, &system_token_size);
- if (mode != RANDOM_SEED_ALWAYS && err != EFI_SUCCESS)
+ err = acquire_system_token(&system_token, &size);
+ if (mode != RANDOM_SEED_ALWAYS && (err != EFI_SUCCESS || size < DESIRED_SEED_SIZE) && !seeded_by_efi)
return err;
+ sha256_process_bytes(&size, sizeof(size), &hash);
+ if (system_token) {
+ sha256_process_bytes(system_token, size, &hash);
+ explicit_bzero_safe(system_token, size);
+ }
err = root_dir->Open(
root_dir,
@@ -261,7 +210,7 @@ EFI_STATUS process_random_seed(EFI_FILE *root_dir, RandomSeedMode mode) {
err = get_file_info_harder(handle, &info, NULL);
if (err != EFI_SUCCESS)
- return log_error_status_stall(err, L"Failed to get file info for random seed: %r");
+ return log_error_status_stall(err, L"Failed to get file info for random seed: %r", err);
size = info->FileSize;
if (size < RANDOM_MAX_SIZE_MIN)
@@ -271,51 +220,105 @@ EFI_STATUS process_random_seed(EFI_FILE *root_dir, RandomSeedMode mode) {
return log_error_status_stall(EFI_INVALID_PARAMETER, L"Random seed file is too large.");
seed = xmalloc(size);
-
rsize = size;
err = handle->Read(handle, &rsize, seed);
if (err != EFI_SUCCESS)
return log_error_status_stall(err, L"Failed to read random seed file: %r", err);
- if (rsize != size)
+ if (rsize != size) {
+ explicit_bzero_safe(seed, rsize);
return log_error_status_stall(EFI_PROTOCOL_ERROR, L"Short read on random seed file.");
+ }
+
+ sha256_process_bytes(&size, sizeof(size), &hash);
+ sha256_process_bytes(seed, size, &hash);
+ explicit_bzero_safe(seed, size);
err = handle->SetPosition(handle, 0);
if (err != EFI_SUCCESS)
return log_error_status_stall(err, L"Failed to seek to beginning of random seed file: %r", err);
- /* Request some random data from the UEFI RNG. We don't need this to work safely, but it's a good
- * idea to use it because it helps us for cases where users mistakenly include a random seed in
- * golden master images that are replicated many times. */
- (void) acquire_rng(size, &rng); /* It's fine if this fails */
-
/* Let's also include the UEFI monotonic counter (which is supposedly increasing on every single
* boot) in the hash, so that even if the changes to the ESP for some reason should not be
* persistent, the random seed we generate will still be different on every single boot. */
err = BS->GetNextMonotonicCount(&uefi_monotonic_counter);
- if (err != EFI_SUCCESS)
+ if (err != EFI_SUCCESS && !seeded_by_efi)
return log_error_status_stall(err, L"Failed to acquire UEFI monotonic counter: %r", err);
-
- /* Calculate new random seed for the disk and what to pass to the kernel */
- err = mangle_random_seed(seed, rng, size, system_token, system_token_size, uefi_monotonic_counter, &new_seed, &for_kernel);
- if (err != EFI_SUCCESS)
- return err;
-
+ size = sizeof(uefi_monotonic_counter);
+ sha256_process_bytes(&size, sizeof(size), &hash);
+ sha256_process_bytes(&uefi_monotonic_counter, size, &hash);
+ err = RT->GetTime(&now, NULL);
+ size = err == EFI_SUCCESS ? sizeof(now) : 0; /* Known to be flaky, so don't bark on error. */
+ sha256_process_bytes(&size, sizeof(size), &hash);
+ sha256_process_bytes(&now, size, &hash);
+
+ /* hash_key = HASH(hash) */
+ sha256_finish_ctx(&hash, hash_key);
+
+ /* hash = hash_key || 0 */
+ sha256_init_ctx(&hash);
+ sha256_process_bytes(hash_key, sizeof(hash_key), &hash);
+ sha256_process_bytes(&(const uint8_t){ 0 }, sizeof(uint8_t), &hash);
+ /* random_bytes = HASH(hash) */
+ sha256_finish_ctx(&hash, random_bytes);
+
+ size = sizeof(random_bytes);
+ /* If the file size is too large, zero out the remaining bytes on disk, and then truncate. */
+ if (size < info->FileSize) {
+ err = handle->SetPosition(handle, size);
+ if (err != EFI_SUCCESS)
+ return log_error_status_stall(err, L"Failed to seek to offset of random seed file: %r", err);
+ wsize = info->FileSize - size;
+ err = handle->Write(handle, &wsize, seed /* All zeros now */);
+ if (err != EFI_SUCCESS)
+ return log_error_status_stall(err, L"Failed to write random seed file: %r", err);
+ if (wsize != info->FileSize - size)
+ return log_error_status_stall(EFI_PROTOCOL_ERROR, L"Short write on random seed file.");
+ err = handle->Flush(handle);
+ if (err != EFI_SUCCESS)
+ return log_error_status_stall(err, L"Failed to flush random seed file: %r", err);
+ err = handle->SetPosition(handle, 0);
+ if (err != EFI_SUCCESS)
+ return log_error_status_stall(err, L"Failed to seek to beginning of random seed file: %r", err);
+ info->FileSize = size;
+ err = handle->SetInfo(handle, &GenericFileInfo, info->Size, info);
+ if (err != EFI_SUCCESS)
+ return log_error_status_stall(err, L"Failed to truncate random seed file: %r", err);
+ }
/* Update the random seed on disk before we use it */
wsize = size;
- err = handle->Write(handle, &wsize, new_seed);
+ err = handle->Write(handle, &wsize, random_bytes);
if (err != EFI_SUCCESS)
return log_error_status_stall(err, L"Failed to write random seed file: %r", err);
if (wsize != size)
return log_error_status_stall(EFI_PROTOCOL_ERROR, L"Short write on random seed file.");
-
err = handle->Flush(handle);
if (err != EFI_SUCCESS)
return log_error_status_stall(err, L"Failed to flush random seed file: %r", err);
- /* We are good to go */
- err = efivar_set_raw(LOADER_GUID, L"LoaderRandomSeed", for_kernel, size, 0);
+ err = BS->AllocatePool(EfiACPIReclaimMemory, sizeof(*new_seed_table) + DESIRED_SEED_SIZE,
+ (void **) &new_seed_table);
+ if (err != EFI_SUCCESS)
+ return log_error_status_stall(err, L"Failed to allocate EFI table for random seed: %r", err);
+ new_seed_table->size = DESIRED_SEED_SIZE;
+
+ /* hash = hash_key || 1 */
+ sha256_init_ctx(&hash);
+ sha256_process_bytes(hash_key, sizeof(hash_key), &hash);
+ sha256_process_bytes(&(const uint8_t){ 1 }, sizeof(uint8_t), &hash);
+ /* new_seed_table->seed = HASH(hash) */
+ sha256_finish_ctx(&hash, new_seed_table->seed);
+
+ err = BS->InstallConfigurationTable(&(EFI_GUID)LINUX_EFI_RANDOM_SEED_TABLE_GUID, new_seed_table);
if (err != EFI_SUCCESS)
- return log_error_status_stall(err, L"Failed to write random seed to EFI variable: %r", err);
+ return log_error_status_stall(err, L"Failed to install EFI table for random seed: %r", err);
+ TAKE_PTR(new_seed_table);
+
+ if (previous_seed_table) {
+ /* Now that we've succeeded in installing the new table, we can safely nuke the old one. */
+ explicit_bzero_safe(previous_seed_table->seed, previous_seed_table->size);
+ explicit_bzero_safe(previous_seed_table, sizeof(*previous_seed_table));
+ free(previous_seed_table);
+ }
return EFI_SUCCESS;
}
diff --git a/src/boot/efi/util.h b/src/boot/efi/util.h
index b33c50f9fc..15dd87f774 100644
--- a/src/boot/efi/util.h
+++ b/src/boot/efi/util.h
@@ -10,6 +10,21 @@
#define UINTN_MAX (~(UINTN)0)
#define INTN_MAX ((INTN)(UINTN_MAX>>1))
+#ifdef __OPTIMIZE__
+#ifndef __has_attribute
+#define __has_attribute(x) 0
+#endif
+#if __has_attribute(__error__)
+__attribute__((noreturn)) extern void __assert_cl_failure__(void) __attribute__((__error__("compile-time assertion failed")));
+#else
+__attribute__((noreturn)) extern void __assert_cl_failure__(void);
+#endif
+/* assert_cl generates a later-stage compile-time assertion when constant folding occurs. */
+#define assert_cl(condition) if (!(condition)) __assert_cl_failure__()
+#else
+#define assert_cl(condition) assert(condition)
+#endif
+
/* gnu-efi format specifiers for integers are fixed to either 64bit with 'l' and 32bit without a size prefix.
* We rely on %u/%d/%x to format regular ints, so ensure the size is what we expect. At the same time, we also
* need specifiers for (U)INTN which are native (pointer) sized. */
@@ -43,6 +58,16 @@ static inline void freep(void *p) {
#define _cleanup_free_ _cleanup_(freep)
+static __always_inline void erase_obj(void *p) {
+ size_t l;
+ assert_cl(p != NULL);
+ l = __builtin_object_size(p, 0);
+ assert_cl(l != (size_t) -1);
+ explicit_bzero_safe(p, l);
+}
+
+#define _cleanup_erase_ _cleanup_(erase_obj)
+
_malloc_ _alloc_(1) _returns_nonnull_ _warn_unused_result_
static inline void *xmalloc(size_t size) {
void *p;
diff --git a/src/core/efi-random.c b/src/core/efi-random.c
index 4086b12739..61516775fc 100644
--- a/src/core/efi-random.c
+++ b/src/core/efi-random.c
@@ -12,79 +12,23 @@
#include "random-util.h"
#include "strv.h"
-/* If a random seed was passed by the boot loader in the LoaderRandomSeed EFI variable, let's credit it to
- * the kernel's random pool, but only once per boot. If this is run very early during initialization we can
- * instantly boot up with a filled random pool.
- *
- * This makes no judgement on the entropy passed, it's the job of the boot loader to only pass us a seed that
- * is suitably validated. */
-
-static void lock_down_efi_variables(void) {
+void lock_down_efi_variables(void) {
+ _cleanup_close_ int fd = -1;
int r;
+ fd = open(EFIVAR_PATH(EFI_LOADER_VARIABLE(LoaderSystemToken)), O_RDONLY|O_CLOEXEC);
+ if (fd < 0) {
+ if (errno != ENOENT)
+ log_warning_errno(errno, "Unable to open LoaderSystemToken EFI variable, ignoring: %m");
+ return;
+ }
+
/* Paranoia: let's restrict access modes of these a bit, so that unprivileged users can't use them to
* identify the system or gain too much insight into what we might have credited to the entropy
* pool. */
- FOREACH_STRING(path,
- EFIVAR_PATH(EFI_LOADER_VARIABLE(LoaderRandomSeed)),
- EFIVAR_PATH(EFI_LOADER_VARIABLE(LoaderSystemToken))) {
-
- r = chattr_path(path, 0, FS_IMMUTABLE_FL, NULL);
- if (r == -ENOENT)
- continue;
- if (r < 0)
- log_warning_errno(r, "Failed to drop FS_IMMUTABLE_FL from %s, ignoring: %m", path);
-
- if (chmod(path, 0600) < 0)
- log_warning_errno(errno, "Failed to reduce access mode of %s, ignoring: %m", path);
- }
-}
-
-int efi_take_random_seed(void) {
- _cleanup_free_ void *value = NULL;
- size_t size;
- int r;
-
- /* Paranoia comes first. */
- lock_down_efi_variables();
-
- if (access("/run/systemd/efi-random-seed-taken", F_OK) < 0) {
- if (errno != ENOENT) {
- log_warning_errno(errno, "Failed to determine whether we already used the random seed token, not using it.");
- return 0;
- }
-
- /* ENOENT means we haven't used it yet. */
- } else {
- log_debug("EFI random seed already used, not using again.");
- return 0;
- }
-
- r = efi_get_variable(EFI_LOADER_VARIABLE(LoaderRandomSeed), NULL, &value, &size);
- if (r == -EOPNOTSUPP) {
- log_debug_errno(r, "System lacks EFI support, not initializing random seed from EFI variable.");
- return 0;
- }
- if (r == -ENOENT) {
- log_debug_errno(r, "Boot loader did not pass LoaderRandomSeed EFI variable, not crediting any entropy.");
- return 0;
- }
+ r = chattr_fd(fd, 0, FS_IMMUTABLE_FL, NULL);
if (r < 0)
- return log_warning_errno(r, "Failed to read LoaderRandomSeed EFI variable, ignoring: %m");
-
- if (size == 0)
- return log_warning_errno(SYNTHETIC_ERRNO(EINVAL), "Random seed passed from boot loader has zero size? Ignoring.");
-
- /* Before we use the seed, let's mark it as used, so that we never credit it twice. Also, it's a nice
- * way to let users known that we successfully acquired entropy from the boot loader. */
- r = touch("/run/systemd/efi-random-seed-taken");
- if (r < 0)
- return log_warning_errno(r, "Unable to mark EFI random seed as used, not using it: %m");
-
- r = random_write_entropy(-1, value, size, true);
- if (r < 0)
- return log_warning_errno(errno, "Failed to credit entropy, ignoring: %m");
-
- log_info("Successfully credited entropy passed from boot loader.");
- return 1;
+ log_warning_errno(r, "Failed to drop FS_IMMUTABLE_FL from LoaderSystemToken EFI variable, ignoring: %m");
+ if (fchmod(fd, 0600) < 0)
+ log_warning_errno(errno, "Failed to reduce access mode of LoaderSystemToken EFI variable, ignoring: %m");
}
diff --git a/src/core/efi-random.h b/src/core/efi-random.h
index 7d20fff57d..87166c9e3f 100644
--- a/src/core/efi-random.h
+++ b/src/core/efi-random.h
@@ -1,4 +1,4 @@
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#pragma once
-int efi_take_random_seed(void);
+void lock_down_efi_variables(void);
diff --git a/src/core/main.c b/src/core/main.c
index cc725e6c42..119c518664 100644
--- a/src/core/main.c
+++ b/src/core/main.c
@@ -2831,8 +2831,8 @@ int main(int argc, char *argv[]) {
goto finish;
}
- /* The efivarfs is now mounted, let's read the random seed off it */
- (void) efi_take_random_seed();
+ /* The efivarfs is now mounted, let's lock down the system token. */
+ lock_down_efi_variables();
/* Cache command-line options passed from EFI variables */
if (!skip_setup)
diff --git a/src/random-seed/random-seed.c b/src/random-seed/random-seed.c
index 04c2a29762..ccb8e47e19 100644
--- a/src/random-seed/random-seed.c
+++ b/src/random-seed/random-seed.c
@@ -16,7 +16,10 @@
#include "alloc-util.h"
#include "build.h"
+#include "chase-symlinks.h"
+#include "efi-loader.h"
#include "fd-util.h"
+#include "find-esp.h"
#include "fs-util.h"
#include "io-util.h"
#include "log.h"
@@ -26,6 +29,7 @@
#include "mkdir.h"
#include "parse-argument.h"
#include "parse-util.h"
+#include "path-util.h"
#include "pretty-print.h"
#include "random-util.h"
#include "string-table.h"
@@ -185,7 +189,7 @@ static int load_seed_file(
if (ret_hash_state) {
struct sha256_ctx *hash_state;
- hash_state = malloc(sizeof(struct sha256_ctx));
+ hash_state = new(struct sha256_ctx, 1);
if (!hash_state)
return log_oom();
@@ -311,6 +315,101 @@ static int save_seed_file(
return 0;
}
+static int refresh_boot_seed(void) {
+ uint8_t buffer[RANDOM_EFI_SEED_SIZE];
+ struct sha256_ctx hash_state;
+ _cleanup_free_ void *seed_file_bytes = NULL;
+ _cleanup_free_ char *esp_path = NULL;
+ _cleanup_close_ int seed_fd = -1;
+ size_t len;
+ ssize_t r;
+
+ assert_cc(RANDOM_EFI_SEED_SIZE == SHA256_DIGEST_SIZE);
+
+ r = find_esp_and_warn(NULL, NULL, /* unprivileged_mode= */ false, &esp_path,
+ NULL, NULL, NULL, NULL, NULL);
+ if (r < 0) {
+ if (r == -ENOKEY) {
+ log_debug_errno(r, "Couldn't find any ESP, so not updating ESP random seed.");
+ return 0;
+ }
+ return r; /* find_esp_and_warn() already logged */
+ }
+
+ seed_fd = chase_symlinks_and_open("/loader/random-seed", esp_path,
+ CHASE_PREFIX_ROOT|CHASE_PROHIBIT_SYMLINKS,
+ O_RDWR|O_CLOEXEC|O_NOCTTY, NULL);
+ if (seed_fd == -ENOENT) {
+ uint64_t features;
+
+ r = efi_loader_get_features(&features);
+ if (r == 0 && FLAGS_SET(features, EFI_LOADER_FEATURE_RANDOM_SEED)) {
+ int dir_fd = chase_symlinks_and_open("/loader", esp_path,
+ CHASE_PREFIX_ROOT|CHASE_PROHIBIT_SYMLINKS,
+ O_DIRECTORY|O_CLOEXEC|O_NOCTTY, NULL);
+ if (dir_fd >= 0) {
+ seed_fd = openat(dir_fd, "random-seed", O_CREAT|O_EXCL|O_RDWR|O_CLOEXEC|O_NOCTTY, 0600);
+ close(dir_fd);
+ }
+ }
+ }
+ if (seed_fd < 0) {
+ log_debug_errno(seed_fd, "Failed to open EFI seed path: %m");
+ return 0;
+ }
+ r = random_seed_size(seed_fd, &len);
+ if (r < 0)
+ return log_error_errno(r, "Failed to determine EFI seed path length: %m");
+ seed_file_bytes = malloc(len);
+ if (!seed_file_bytes)
+ return log_oom();
+ r = loop_read(seed_fd, seed_file_bytes, len, false);
+ if (r < 0)
+ return log_error_errno(r, "Failed to read EFI seed file: %m");
+
+ /* Hash the old seed in so that we never regress in entropy. */
+ sha256_init_ctx(&hash_state);
+ sha256_process_bytes(&r, sizeof(r), &hash_state);
+ sha256_process_bytes(seed_file_bytes, r, &hash_state);
+
+ /* We're doing this opportunistically, so if the seeding dance before didn't manage to initialize the
+ * RNG, there's no point in doing it here. Secondly, getrandom(GRND_NONBLOCK) has been around longer
+ * than EFI seeding anyway, so there's no point in having non-getrandom() fallbacks here. So if this
+ * fails, just return early to cut our losses. */
+ r = getrandom(buffer, sizeof(buffer), GRND_NONBLOCK);
+ if (r < 0) {
+ if (errno == EAGAIN) {
+ log_debug_errno(errno, "Random pool not initialized yet, so skipping EFI seed update");
+ return 0;
+ }
+ if (errno == ENOSYS) {
+ log_debug_errno(errno, "getrandom() not available, so skipping EFI seed update");
+ return 0;
+ }
+ return log_error_errno(errno, "Failed to generate random bytes for EFI seed: %m");
+ }
+ assert(r == sizeof(buffer));
+
+ /* Hash the new seed into the state containing the old one to generate our final seed. */
+ sha256_process_bytes(&r, sizeof(r), &hash_state);
+ sha256_process_bytes(buffer, r, &hash_state);
+ sha256_finish_ctx(&hash_state, buffer);
+
+ if (lseek(seed_fd, 0, SEEK_SET) < 0)
+ return log_error_errno(errno, "Failed to seek to beginning of EFI seed file: %m");
+ r = loop_write(seed_fd, buffer, sizeof(buffer), false);
+ if (r < 0)
+ return log_error_errno(r, "Failed to write new EFI seed file: %m");
+ if (ftruncate(seed_fd, sizeof(buffer)) < 0)
+ return log_error_errno(errno, "Failed to truncate EFI seed file: %m");
+ r = fsync_full(seed_fd);
+ if (r < 0)
+ return log_error_errno(errno, "Failed to fsync EFI seed file: %m");
+
+ log_debug("Updated random seed in ESP");
+ return 0;
+}
+
static int help(int argc, char *argv[], void *userdata) {
_cleanup_free_ char *link = NULL;
int r;
@@ -402,15 +501,15 @@ static int run(int argc, char *argv[]) {
if (r < 0)
return log_error_errno(r, "Failed to create directory " RANDOM_SEED_DIR ": %m");
+ random_fd = open("/dev/urandom", O_RDWR|O_CLOEXEC|O_NOCTTY);
+ if (random_fd < 0)
+ return log_error_errno(errno, "Failed to open /dev/urandom: %m");
+
/* When we load the seed we read it and write it to the device and then immediately update the saved
* seed with new data, to make sure the next boot gets seeded differently. */
switch (arg_action) {
case ACTION_LOAD:
- random_fd = open("/dev/urandom", O_RDWR|O_CLOEXEC|O_NOCTTY);
- if (random_fd < 0)
- return log_error_errno(errno, "Failed to open /dev/urandom: %m");
-
/* First, let's write the machine ID into /dev/urandom, not crediting entropy. See
* load_machine_id() for an explanation why. */
load_machine_id(random_fd);
@@ -428,8 +527,10 @@ static int run(int argc, char *argv[]) {
log_full_errno(level, open_rw_error, "Failed to open " RANDOM_SEED " for writing: %m");
log_full_errno(level, errno, "Failed to open " RANDOM_SEED " for reading: %m");
+ r = -errno;
- return missing ? 0 : -errno;
+ (void) refresh_boot_seed();
+ return missing ? 0 : r;
}
} else
write_seed_file = true;
@@ -439,10 +540,7 @@ static int run(int argc, char *argv[]) {
break;
case ACTION_SAVE:
- random_fd = open("/dev/urandom", O_RDONLY|O_CLOEXEC|O_NOCTTY);
- if (random_fd < 0)
- return log_error_errno(errno, "Failed to open /dev/urandom: %m");
-
+ (void) refresh_boot_seed();
seed_fd = open(RANDOM_SEED, O_WRONLY|O_CLOEXEC|O_NOCTTY|O_CREAT, 0600);
if (seed_fd < 0)
return log_error_errno(errno, "Failed to open " RANDOM_SEED ": %m");
@@ -460,9 +558,11 @@ static int run(int argc, char *argv[]) {
if (r < 0)
return r;
- if (read_seed_file)
+ if (read_seed_file) {
r = load_seed_file(seed_fd, random_fd, seed_size,
write_seed_file ? &hash_state : NULL);
+ (void) refresh_boot_seed();
+ }
if (r >= 0 && write_seed_file)
r = save_seed_file(seed_fd, random_fd, seed_size, synchronous, hash_state);
diff --git a/units/systemd-boot-system-token.service b/units/systemd-boot-system-token.service
index 662a1fda04..5a56d7c331 100644
--- a/units/systemd-boot-system-token.service
+++ b/units/systemd-boot-system-token.service
@@ -26,9 +26,6 @@ ConditionPathExists=/sys/firmware/efi/efivars/LoaderFeatures-4a67b082-0a4c-41cf-
# Only run this if there is no system token defined yet, or …
ConditionPathExists=|!/sys/firmware/efi/efivars/LoaderSystemToken-4a67b082-0a4c-41cf-b6c7-440b29bb8c4f
-# … if the boot loader didn't pass the OS a random seed (and thus probably was missing the random seed file)
-ConditionPathExists=|!/sys/firmware/efi/efivars/LoaderRandomSeed-4a67b082-0a4c-41cf-b6c7-440b29bb8c4f
-
[Service]
Type=oneshot
RemainAfterExit=yes