summaryrefslogtreecommitdiffstats
path: root/src/boot/efi/sha256.c
blob: 5df7e5316e0ffc0a28cc010ee6b882f191e15a8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/* SPDX-License-Identifier: LGPL-2.1-or-later */

/* Stolen from glibc and converted to UEFI style. In glibc it comes with the following copyright blurb: */

/* Functions to compute SHA256 message digest of files or memory blocks.
   according to the definition of SHA256 in FIPS 180-2.
   Copyright (C) 2007-2019 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

/* Written by Ulrich Drepper <drepper@redhat.com>, 2007.  */

#include "macro-fundamental.h"
#include "sha256.h"

#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
# define SWAP(n)                                                        \
        (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
# define SWAP64(n)                              \
        (((n) << 56)                            \
         | (((n) & 0xff00) << 40)               \
         | (((n) & 0xff0000) << 24)             \
         | (((n) & 0xff000000) << 8)            \
         | (((n) >> 8) & 0xff000000)            \
         | (((n) >> 24) & 0xff0000)             \
         | (((n) >> 40) & 0xff00)               \
         | ((n) >> 56))
#else
# define SWAP(n) (n)
# define SWAP64(n) (n)
#endif

/* This array contains the bytes used to pad the buffer to the next
   64-byte boundary.  (FIPS 180-2:5.1.1)  */
static const UINT8 fillbuf[64] = {
        0x80, 0 /* , 0, 0, ...  */
};

/* Constants for SHA256 from FIPS 180-2:4.2.2.  */
static const UINT32 K[64] = {
        0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
        0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
        0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
        0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
        0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
        0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
        0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
        0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
        0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
        0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
        0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
        0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
        0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
        0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
        0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
        0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};

static void sha256_process_block(const void *, UINTN, struct sha256_ctx *);

/* Initialize structure containing state of computation.
   (FIPS 180-2:5.3.2)  */
void sha256_init_ctx(struct sha256_ctx *ctx) {
        assert(ctx);

        ctx->H[0] = 0x6a09e667;
        ctx->H[1] = 0xbb67ae85;
        ctx->H[2] = 0x3c6ef372;
        ctx->H[3] = 0xa54ff53a;
        ctx->H[4] = 0x510e527f;
        ctx->H[5] = 0x9b05688c;
        ctx->H[6] = 0x1f83d9ab;
        ctx->H[7] = 0x5be0cd19;

        ctx->total64 = 0;
        ctx->buflen = 0;
}

/* Process the remaining bytes in the internal buffer and the usual
   prolog according to the standard and write the result to RESBUF.

   IMPORTANT: On some systems it is required that RESBUF is correctly
   aligned for a 32 bits value.  */
void *sha256_finish_ctx(struct sha256_ctx *ctx, void *resbuf) {
        /* Take yet unprocessed bytes into account.  */
        UINT32 bytes = ctx->buflen;
        UINTN pad;

        assert(ctx);
        assert(resbuf);

        /* Now count remaining bytes.  */
        ctx->total64 += bytes;

        pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
        CopyMem (&ctx->buffer[bytes], fillbuf, pad);

        /* Put the 64-bit file length in *bits* at the end of the buffer.  */
        ctx->buffer32[(bytes + pad + 4) / 4] = SWAP (ctx->total[TOTAL64_low] << 3);
        ctx->buffer32[(bytes + pad) / 4] = SWAP ((ctx->total[TOTAL64_high] << 3)
                                                 | (ctx->total[TOTAL64_low] >> 29));

        /* Process last bytes.  */
        sha256_process_block (ctx->buffer, bytes + pad + 8, ctx);

        /* Put result from CTX in first 32 bytes following RESBUF.  */
        for (UINTN i = 0; i < 8; ++i)
                ((UINT32 *) resbuf)[i] = SWAP (ctx->H[i]);

        return resbuf;
}

void sha256_process_bytes(const void *buffer, UINTN len, struct sha256_ctx *ctx) {
        assert(buffer);
        assert(ctx);

        /* When we already have some bits in our internal buffer concatenate
           both inputs first.  */

        if (ctx->buflen != 0) {
                UINTN left_over = ctx->buflen;
                UINTN add = 128 - left_over > len ? len : 128 - left_over;

                CopyMem (&ctx->buffer[left_over], buffer, add);
                ctx->buflen += add;

                if (ctx->buflen > 64) {
                        sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);

                        ctx->buflen &= 63;
                        /* The regions in the following copy operation cannot overlap.  */
                        CopyMem (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
                                ctx->buflen);
                }

                buffer = (const char *) buffer + add;
                len -= add;
        }

        /* Process available complete blocks.  */
        if (len >= 64) {

/* The condition below is from glibc's string/string-inline.c.
 * See definition of _STRING_INLINE_unaligned. */
#if !defined(__mc68020__) && !defined(__s390__) && !defined(__i386__)

/* To check alignment gcc has an appropriate operator. Other compilers don't.  */
# if __GNUC__ >= 2
#  define UNALIGNED_P(p) (((UINTN) p) % __alignof__ (UINT32) != 0)
# else
#  define UNALIGNED_P(p) (((UINTN) p) % sizeof (UINT32) != 0)
# endif
                if (UNALIGNED_P (buffer))
                        while (len > 64) {
                                CopyMem (ctx->buffer, buffer, 64);
                                sha256_process_block (ctx->buffer, 64, ctx);
                                buffer = (const char *) buffer + 64;
                                len -= 64;
                        }
                else
#endif
                {
                        sha256_process_block (buffer, len & ~63, ctx);
                        buffer = (const char *) buffer + (len & ~63);
                        len &= 63;
                }
        }

        /* Move remaining bytes into internal buffer.  */
        if (len > 0) {
                UINTN left_over = ctx->buflen;

                CopyMem (&ctx->buffer[left_over], buffer, len);
                left_over += len;
                if (left_over >= 64) {
                        sha256_process_block (ctx->buffer, 64, ctx);
                        left_over -= 64;
                        CopyMem (ctx->buffer, &ctx->buffer[64], left_over);
                }
                ctx->buflen = left_over;
        }
}


/* Process LEN bytes of BUFFER, accumulating context into CTX.
   It is assumed that LEN % 64 == 0.  */
static void sha256_process_block(const void *buffer, UINTN len, struct sha256_ctx *ctx) {
        const UINT32 *words = buffer;
        UINTN nwords = len / sizeof (UINT32);

        assert(buffer);
        assert(ctx);

        UINT32 a = ctx->H[0];
        UINT32 b = ctx->H[1];
        UINT32 c = ctx->H[2];
        UINT32 d = ctx->H[3];
        UINT32 e = ctx->H[4];
        UINT32 f = ctx->H[5];
        UINT32 g = ctx->H[6];
        UINT32 h = ctx->H[7];

        /* First increment the byte count.  FIPS 180-2 specifies the possible
           length of the file up to 2^64 bits.  Here we only compute the
           number of bytes.  */
        ctx->total64 += len;

        /* Process all bytes in the buffer with 64 bytes in each round of
           the loop.  */
        while (nwords > 0) {
                UINT32 W[64];
                UINT32 a_save = a;
                UINT32 b_save = b;
                UINT32 c_save = c;
                UINT32 d_save = d;
                UINT32 e_save = e;
                UINT32 f_save = f;
                UINT32 g_save = g;
                UINT32 h_save = h;

                /* Operators defined in FIPS 180-2:4.1.2.  */
#define Ch(x, y, z) ((x & y) ^ (~x & z))
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22))
#define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25))
#define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3))
#define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10))

                /* It is unfortunate that C does not provide an operator for
                   cyclic rotation.  Hope the C compiler is smart enough.  */
#define CYCLIC(w, s) ((w >> s) | (w << (32 - s)))

                /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2.  */
                for (UINTN t = 0; t < 16; ++t) {
                        W[t] = SWAP (*words);
                        ++words;
                }
                for (UINTN t = 16; t < 64; ++t)
                        W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];

                /* The actual computation according to FIPS 180-2:6.2.2 step 3.  */
                for (UINTN t = 0; t < 64; ++t) {
                        UINT32 T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
                        UINT32 T2 = S0 (a) + Maj (a, b, c);
                        h = g;
                        g = f;
                        f = e;
                        e = d + T1;
                        d = c;
                        c = b;
                        b = a;
                        a = T1 + T2;
                }

                /* Add the starting values of the context according to FIPS 180-2:6.2.2
                   step 4.  */
                a += a_save;
                b += b_save;
                c += c_save;
                d += d_save;
                e += e_save;
                f += f_save;
                g += g_save;
                h += h_save;

                /* Prepare for the next round.  */
                nwords -= 16;
        }

        /* Put checksum in context given as argument.  */
        ctx->H[0] = a;
        ctx->H[1] = b;
        ctx->H[2] = c;
        ctx->H[3] = d;
        ctx->H[4] = e;
        ctx->H[5] = f;
        ctx->H[6] = g;
        ctx->H[7] = h;
}